WAC 296-62-07329 Vinyl chloride.

(1) **Scope and application.**

- (a) This section includes requirements for the control of employee exposure to vinyl chloride (chloroethene), Chemical Abstracts Service Registry No. 75014.
- (b) This section applies to the manufacture, reaction, packaging, repackaging, storage, handling or use of vinyl chloride or polyvinyl chloride, but does not apply to the handling or use of fabricated products made of polyvinyl chloride.
- (c) This section applies to the transportation of vinyl chloride or polyvinyl chloride except to the extent that the department of transportation may regulate the hazards covered by this section.

(2) **Definitions.**

- (a) "Action level" means a concentration of vinyl chloride of 0.5 ppm averaged over an 8-hour work day.
- (b) "Authorized person" means any person specifically authorized by the employer whose duties require him/her to enter a regulated area or any person entering such an area as a designated representative of employees for the purpose of exercising an opportunity to observe monitoring and measuring procedures.
- (c) "Director" means the director of department of labor and industries or his/her designated representative.
- (d) **"Emergency"** means any occurrence such as, but not limited to, equipment failure, or operation of a relief device which is likely to, or does, result in massive release of vinyl chloride.
- (e) **"Fabricated product"** means a product made wholly or partly from polyvinyl chloride, and which does not require further processing at temperatures, and for times, sufficient to cause mass melting of the polyvinyl chloride resulting in the release of vinyl chloride.
- (f) "Hazardous operation" means any operation, procedure, or activity where a release of either vinyl chloride liquid or gas might be expected as a consequence of the operation or because of an accident in the operation, which would result in an employee exposure in excess of the permissible exposure limit.
- (g) **"Polyvinyl chloride"** means polyvinyl chloride homopolymer or copolymer before such is converted to a fabricated product.
- (h) "Vinyl chloride" means vinyl chloride monomer.

(3) **Permissible exposure limit.**

- (a) No employee may be exposed to vinyl chloride at concentrations greater than 1 ppm averaged over any 8-hour period, and
- (b) No employee may be exposed to vinyl chloride at concentrations greater than 5 ppm averaged over any period not exceeding 15 minutes.
- (c) No employee may be exposed to vinyl chloride by direct contact with liquid vinyl chloride.

(4) **Monitoring.**

- (a) A program of initial monitoring and measurement shall be undertaken in each establishment to determine if there is any employee exposed, without regard to the use of respirators, in excess of the action level.
- (b) Where a determination conducted under subdivision (a) of this subsection shows any employee exposures without regard to the use of respirators, in excess of the action level, a program for determining exposures for each such employee shall be established. Such a program:
 - (i) Shall be repeated at least monthly where any employee is exposed, without regard to the use of respirators, in excess of the permissible exposure limit.
 - (ii) Shall be repeated not less than quarterly where any employee is exposed, without regard to the use of respirators, in excess of the action level.
 - (iii) May be discontinued for any employee only when at least two consecutive monitoring determinations, made not less than 5 working days apart, show exposures for that employee at or below the action level.
- (c) Whenever there has been a production, process or control change which may result in an increase in the release of vinyl chloride, or the employer has any other reason to suspect that any employee may be exposed in excess of the action level, a determination of employee exposure under subdivision (a) of this subsection shall be performed.
- (d) The method of monitoring and measurement shall have an accuracy (with a confidence level of 95 percent) of not less than plus or minus 50 percent from 0.25 through 0.5 ppm, plus or minus 35 percent from over 0.5 ppm through 1.0 ppm, plus or minus 25 percent over 1.0 ppm, (methods meeting these accuracy requirements are available from the director).
- (e) Employees or their designated representatives shall be afforded reasonable opportunity to observe the monitoring and measuring required by this subsection.

(5) **Regulated area.**

- (a) A regulated area shall be established where:
 - (i) Vinyl chloride or polyvinyl chloride is manufactured, reacted, repackaged, stored, handled or used; and
 - (ii) Vinyl chloride concentrations are in excess of the permissible exposure limit.
- (b) Access to regulated areas shall be limited to authorized persons.
- (6) **Methods of compliance.** Employee exposures to vinyl chloride shall be controlled to at or below the permissible exposure limit provided in subsection (3) of this section by engineering, work-practice, and personal protective controls as follows:
 - (a) Feasible engineering and work-practice controls shall immediately be used to reduce exposures to at or below the permissible exposure limit.
 - (b) Wherever feasible engineering and work-practice controls which can be instituted immediately are not sufficient to reduce exposures to at or below the permissible exposure limit, they shall

Part G Carcinogens (Specific)

nonetheless be used to reduce exposures to the lowest practicable level, and shall be supplemented

by respiratory protection in accordance with subsection (7) of this section. A program shall be established and implemented to reduce exposures to at or below the permissible exposure limit, or to the greatest extent feasible, solely by means of engineering and work-practice controls, as soon as feasible.

(c) Written plans for such a program shall be developed and furnished upon request for examination and copying to the director. Such plans shall be updated at least every six months.

(7) **Respiratory protection.**

- (a) General. For employees who use respirators required by this section, the employer must provide respirators that comply with the requirements of this section.
- (b) Respirator program. The employer must establish, implement, and maintain a respiratory protection program as required in chapter 296-62 WAC, Part E (except WAC 296-62-07130(1), 296-62-07131(4)(b)(i) and (ii), and 296-62-07150 through 296-62-07156).
- (c) Respirator selection. Respirators must be selected from the following table:

Atmospheric concentration of Vinyl Chloride		Apparatus	
(i)	Not over 10 ppm	Any chemical cartridge respirator with a vinyl chloride cartridge which provides a service life of at least 1 hour for concentrations of vinyl chloride up to 10 ppm.	
(ii)	Not over 25 ppm	(A) A powered air-purifying respirator with hood, helmet, full or half facepiece, and a canister which provides a service life of at least 4 hours for concentrations of vinyl chloride up to 25 ppm, or (B) Gas mask, front or back-mounted canister which provides a service life of at least 4 hours for concentrations of vinyl chloride up to 25 ppm.	
(iii)	Not over 100 ppm	Supplied air respirator demand type, with full facepiece.	
(iv)	Not over 250 ppm	Type C, supplied air respirator, continuous flow type, with full or half facepiece, helmet or hood	
(v)	Not over 3,600 ppm	Combination Type C supplied air respirator, pressure demand type, with full or half facepiece and auxiliary self-contained air supply.	
(vi)	Unknown, or above 3,600 ppm	Open-circuit, self-contained breathing apparatus, pressure demand type, with full facepiece.	

- (d) Where air-purifying respirators are used:
 - (i) Air-purifying canisters or cartridges must be replaced prior to the expiration of their service life or the end of the shift in which they are first used, whichever occurs first, and
 - (ii) A continuous monitoring and alarm system must be provided when concentrations of vinyl chloride could reasonably exceed the allowable concentrations for the devices in use. Such system shall be used to alert employees when vinyl chloride concentrations exceed the allowable concentrations for the devices in use, and
 - (iii) Respirators specified for higher concentrations may be used for lower concentration.

(8) **Hazardous operations.**

- (a) Employees engaged in hazardous operations, including entry of vessels to clean polyvinyl chloride residue from vessel walls, shall be provided and required to wear and use;
 - (i) Respiratory protection in accordance with subsections (3) and (7) of this section; and
 - (ii) Protective garments to prevent skin contact with liquid vinyl chloride or with polyvinyl chloride residue from vessel walls. The protective garments shall be selected for the operation and its possible exposure conditions.
- (b) Protective garments shall be provided clean and dry for each use.
- (c) Emergency situations. A written operational plan for emergency situations shall be developed for each facility storing, handling, or otherwise using vinyl chloride as a liquid or compressed gas. Appropriate portions of the plan shall be implemented in the event of an emergency. The plan shall specifically provide that:
 - (i) Employees engaged in hazardous operations or correcting situations of existing hazardous releases shall be equipped as required in subdivisions (a) and (b) of this subsection;
 - (ii) Other employees not so equipped shall evacuate the area and not return until conditions are controlled by the methods required in subsection (6) of this section and the emergency is abated.
- (9) **Training.** Each employee engaged in vinyl chloride or polyvinyl chloride operations shall be provided training in a program relating to the hazards of vinyl chloride and precautions for its safe use.
 - (a) The program shall include:
 - (i) The nature of the health hazard from chronic exposure to vinyl chloride including specifically the carcinogenic hazard;
 - (ii) The specific nature of operations which could result in exposure to vinyl chloride in excess of the permissible limit and necessary protective steps;
 - (iii) The purpose for, proper use, and limitations of respiratory protective devices;
 - (iv) The fire hazard and acute toxicity of vinyl chloride, and the necessary protective steps;
 - (v) The purpose for and a description of the monitoring program;
 - (vi) The purpose for and a description of, the medical surveillance program;
 - (vii) Emergency procedures:
 - (A) Specific information to aid the employee in recognition of conditions which may result in the release of vinyl chloride; and
 - (B) A review of this standard at the employee's first training and indoctrination program, and annually thereafter.

- (b) All materials relating to the program shall be provided upon request to the director.
- (10) **Medical surveillance.** A program of medical surveillance shall be instituted for each employee exposed, without regard to the use of respirators, to vinyl chloride in excess of the action level. The program shall provide each such employee with an opportunity for examinations and tests in accordance with this subsection. All medical examinations and procedures shall be performed by or under the supervision of a licensed physician and shall be provided without cost to the employee.
 - (a) At the time of initial assignment, or upon institution of medical surveillance;
 - (i) A general physical examination shall be performed with specific attention to detecting enlargement of liver, spleen or kidneys, or dysfunction in these organs, and for abnormalities in skin, connective tissues and the pulmonary system (see Appendix A).
 - (ii) A medical history shall be taken, including the following topics:
 - (A) Alcohol intake,
 - (B) Past history of hepatitis,
 - (C) Work history and past exposure to potential hepatotoxic agents, including drugs and chemicals,
 - (D) Past history of blood transfusions, and
 - (E) Past history of hospitalizations.
 - (iii) A serum specimen shall be obtained and determinations made of:
 - (A) Total bilirubin,
 - (B) Alkaline phosphatase,
 - (C) Serum glutamic oxalacetic transaminase (SGOT),
 - (D) Serum glutamic pyruvic transaminase (SGPT), and
 - (E) Gamma glustamyl transpeptidase.
 - (b) Examinations provided in accordance with this subdivision shall be performed at least:
 - (i) Every 6 months for each employee who has been employed in vinyl chloride or polyvinyl chloride manufacturing for 10 years or longer; and
 - (ii) Annually for all other employees.
 - (c) Each employee exposed to an emergency shall be afforded appropriate medical surveillance.
 - (d) A statement of each employee's suitability for continued exposure to vinyl chloride including use of protective equipment and respirators, shall be obtained from the examining physician promptly after any examination. A copy of the physician's statement shall be provided each employee.

(e) If any employee's health would be materially impaired by continued exposure, such employee shall be withdrawn from possible contact with vinyl chloride.

- (f) Laboratory analyses for all biological specimens included in medical examinations shall be performed in laboratories licensed under 42 CFR Part 74.
- (g) If the examining physician determines that alternative medical examinations to those required by subdivision (a) of this subsection will provide at least equal assurance of detecting medical conditions pertinent to the exposure to vinyl chloride, the employer may accept such alternative examinations as meeting the requirements of subdivision (a) of this subsection, if the employer obtains a statement from the examining physician setting forth the alternative examinations and the rationale for substitution. This statement shall be available upon request for examination and copying to authorized representatives of the director.

(11) Signs and labels.

(a) Entrances to regulated areas shall be posted with legible signs bearing the legend:

CANCER-SUSPECT AGENT AREA AUTHORIZED PERSONNEL ONLY

(b) Areas containing hazardous operations or where an emergency currently exists shall be posted with legible signs bearing the legend:

CANCER-SUSPECT AGENT IN THIS AREA PROTECTIVE EQUIPMENT REQUIRED AUTHORIZED PERSONNEL ONLY

(c) Containers of polyvinyl chloride resin waste from reactors or other waste contaminated with vinyl chloride shall be legibly labeled:

CONTAMINATED WITH VINYL CHLORIDE CANCER-SUSPECT AGENT

(d) Containers of polyvinyl chloride shall be legibly labeled:

POLYVINYL CHLORIDE (OR TRADE NAME) CONTAINS VINYL CHLORIDE VINYL CHLORIDE IS A CANCER-SUSPECT AGENT

(e) Containers of vinyl chloride shall be legibly labeled either:

VINYL CHLORIDE EXTREMELY FLAMMABLE GAS UNDER PRESSURE CANCER-SUSPECT AGENT (or)

(f) In accordance with 49 CFR Part 173, Subpart H, with the additional legends:

CANCER-SUSPECT AGENT

Applied near the label or placard.

(g) No statement shall appear on or near any required sign, label or instruction which contradicts or detracts from the effect of any required warning, information or instruction.

(12) **Records.**

(a) All records maintained in accordance with this section shall include the name and social security number of each employee where relevant.

- (b) Records of required monitoring and measuring and medical records shall be provided upon request to employees, designated representatives, and the director in accordance with WAC 296-62-05201 through 296-62-05209; and 296-62-05213 through 296-62-05217. These records shall be provided upon request to the director. Authorized personnel rosters shall also be provided upon request to the director.
 - (i) Monitoring and measuring records shall:
 - (A) State the date of such monitoring and measuring and the concentrations determined and identify the instruments and methods used;
 - (B) Include any additional information necessary to determine individual employee exposures where such exposures are determined by means other than individual monitoring of employees; and
 - (C) Be maintained for not less than 30 years.
 - (ii) Medical records shall be maintained for the duration of the employment of each employee plus 20 years, or 30 years, whichever is longer.
- (c) In the event that the employer ceases to do business and there is no successor to receive and retain his/her records for the prescribed period, these records shall be transmitted by registered mail to the director, and each employee individually notified in writing of this transfer. The employer shall also comply with any additional requirements set forth in WAC 296-62-05215.
- (d) Employees or their designated representatives shall be provided access to examine and copy records of required monitoring and measuring.
- (e) Former employees shall be provided access to examine and copy required monitoring and measuring records reflecting their own exposures.
- (f) Upon written request of any employee, a copy of the medical record of that employee shall be furnished to any physician designated by the employee.

(13) **Reports.**

- (a) Not later than 1 month after the establishment of a regulated area, the following information shall be reported to the director. Any changes to such information shall be reported within 15 days.
 - (i) The address and location of each establishment which has one or more regulated areas; and
 - (ii) The number of employees in each regulated area during normal operations, including maintenance.
- (b) Emergencies and the facts obtainable at that time, shall be reported within 24 hours to the director. Upon request of the director, the employer shall submit additional information in writing relevant to the nature and extent of employee exposures and measures taken to prevent future emergencies of similar nature.

(c) Within 10 working days following any monitoring and measuring which discloses that any employee has been exposed, without regard to the use of respirators, in excess of the permissible exposure limit, each such employee shall be notified in writing of the results of the exposure measurement and the steps being taken to reduce the exposure to within the permissible exposure limit.

(14) Appendix A supplementary medical information.

APPENDIX A SUPPLEMENTARY MEDICAL INFORMATION

When required tests under subsection (10)(a) of this section show abnormalities, the tests should be repeated as soon as practicable, preferably within 3 to 4 weeks. If tests remain abnormal, consideration should be given to withdrawal of the employee from contact with vinyl chloride, while a more comprehensive examination is made.

Additional tests which may be useful:

- (A) For kidney dysfunction: Urine examination for albumin, red blood cells, and exfoliative abnormal cells.
- (B) Pulmonary system: Forced vital capacity, forced expiratory volume at 1 second, and chest roentgenogram (posterior-anterior, 14 x 17 inches).
- (C) Additional serum tests: Lactic acid dehydrogenase, lactic acid dehydrogenase isoenzyme, protein determination, and protein electrophoresis.
- (D) For a more comprehensive examination on repeated abnormal serum tests: Hepatitis B antigen, and liver scanning.

[Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10) § 296-62-07329, filed 05/04/99, effective 09/01/99. Statutory Authority: Chapter 49.17 RCW. 94-15-096 (Order 94-07), § 296-62-07329, filed 7/20/94, effective 9/20/94; 91-03-044 (Order 90-18), § 296-62-07329, filed 1/10/91, effective 2/12/91. Statutory Authority: RCW 49.17.040 and 49.17.050. 86-16-009 (Order 86-28), § 296-62-07329, filed 7/25/86; 82-13-045 (Order 82-22), § 296-62-07329, filed 6/11/82. Statutory Authority: RCW 49.17.040, 49.17.050 and 49.17.240. 81-18-029 (Order 81-21), § 296-62-07329, filed 8/27/81; 81-16-015 (Order 81-20), § 296-62-07329, filed 7/27/81; Order 75-41, § 296-62-07329, filed 12/19/75.]

WAC 296-62-07336 Acrylonitrile.

(1) Scope and application.

- (a) This section applies to all occupational exposure to acrylonitrile (AN), Chemical Abstracts Service Registry No. 000107131, except as provided in (b) and (c) of this subsection.
- (b) This section does not apply to exposures which result solely from the processing, use, and handling of the following materials:
 - ABS resins, SAN resins, nitrile barrier resins, solid nitrile elastomers, and acrylic and modacrylic fibers, when these listed materials are in the form of finished polymers, and products fabricated from such finished polymers;
 - (ii) Materials made from and/or containing AN for which objective data is reasonably relied upon to demonstrate that the material is not capable of releasing AN in airborne concentrations in excess of 1 ppm as an eight-hour time-weighted average, under the expected conditions of processing, use, and handling which will cause the greatest possible release; and

- (iii) Solid materials made from and/or containing AN which will not be heated above 170°F during handling, use, or processing.
- (c) An employer relying upon exemption under (1)(b)(ii) shall maintain records of the objective data supporting that exemption, and of the basis of the employer's reliance on the data as provided in subsection (17) of this section.
- (2) **Definitions**, as applicable to this section:
 - (a) "Acrylonitrile" or "AN" acrylonitrile monomer, chemical formula CH2 = CHCN.
 - (b) "Action level" a concentration of AN of 1 ppm as an eight-hour time-weighted average.
 - (c) "Authorized person" any person specifically authorized by the employer whose duties require the person to enter a regulated area, or any person entering such an area as a designated representative of employees for the purpose of exercising the opportunity to observe monitoring procedures under subsection (18) of this section.
 - (d) **"Decontamination"** means treatment of materials and surfaces by water washdown, ventilation, or other means, to assure that the materials will not expose employees to airborne concentrations of AN above 1 ppm as an eight-hour time-weighted average.
 - (e) "Director" the director of labor and industries, or his authorized representative.
 - (f) **"Emergency"** any occurrence such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment, which is likely to, or does, result in unexpected exposure to AN in excess of the ceiling limit.
 - (g) **"Liquid AN"** means AN monomer in liquid form, and liquid or semiliquid polymer intermediates, including slurries, suspensions, emulsions, and solutions, produced during the polymerization of AN.
 - (h) **"Polyacrylonitrile" or "PAN"** polyacrylonitrile homopolymers or copolymers, except for materials as exempted under subsection (1)(b) of this section.

(3) **Permissible exposure limits.**

- (a) Inhalation.
 - (i) Time-weighted average limit (TWA). The employer shall assure that no employee is exposed to an airborne concentration of acrylonitrile in excess of two parts acrylonitrile per million parts of air (2 ppm), as an eight-hour time-weighted average.
 - (ii) Ceiling limit. The employer shall assure that no employee is exposed to an airborne concentration of acrylonitrile in excess of 10 ppm as averaged over any fifteen-minute period during the working day.
- (b) Dermal and eye exposure. The employer shall assure that no employee is exposed to skin contact or eye contact with liquid AN or PAN.

(4) Notification of use and emergencies.

- (a) Use. Within ten days of the effective date of this standard, or within fifteen days following the introduction of AN into the workplace, every employer shall report, unless he has done so pursuant to the emergency temporary standard, the following information to the director for each such workplace:
 - (i) The address and location of each workplace in which AN is present;
 - (ii) A brief description of each process of operation which may result in employee exposure to AN;
 - (iii) The number of employees engaged in each process or operation who may be exposed to AN and an estimate of the frequency and degree of exposure that occurs; and
 - (iv) A brief description of the employer's safety and health program as it relates to limitation of employee exposure to AN. Whenever there has been a significant change in the information required by this subsection, the employer shall promptly amend such information previously provided to the director.
- (b) Emergencies and remedial action. Emergencies, and the facts obtainable at that time, shall be reported within 24 hours of the initial occurrence to the director. Upon request of the director, the employer shall submit additional information in writing relevant to the nature and extent of employee exposures and measures taken to prevent future emergencies of a similar nature.

(5) **Exposure monitoring.**

- (a) General.
 - (i) Determinations of airborne exposure levels shall be made from air samples that are representative of each employee's exposure to AN over an eight-hour period.
 - (ii) For the purposes of this section, employee exposure is that which would occur if the employee were not using a respirator.
- (b) Initial monitoring. Each employer who has a place of employment in which AN is present shall monitor each such workplace and work operation to accurately determine the airborne concentrations of AN to which employees may be exposed. Such monitoring may be done on a representative basis, provided that the employer can demonstrate that the determinations are representative of employee exposures.
- (c) Frequency.
 - (i) If the monitoring required by this section reveals employee exposure to be below the action level, the employer may discontinue monitoring for that employee. The employer shall continue these quarterly measurements until at least two consecutive measurements taken at least seven days apart, are below the action level, and thereafter the employer may discontinue monitoring for that employee.
 - (ii) If the monitoring required by this section reveals employee exposure to be at or above the action level but below the permissible exposure limits, the employer shall repeat such monitoring for each such employee at least quarterly.

- (iii) If the monitoring required by this section reveals employee exposure to be in excess of the permissible exposure limits, the employer shall repeat these determinations for each such employee at least monthly. The employer shall continue these monthly measurements until at least two consecutive measurements, taken at least seven days apart, are below the permissible exposure limits, and thereafter the employer shall monitor at least quarterly.
- (d) Additional monitoring. Whenever there has been a production, process, control or personnel change which may result in new or additional exposure to AN, or whenever the employer has any other reason to suspect a change which may result in new or additional exposures to AN, additional monitoring which complies with this subsection shall be conducted.
- (e) Employee notification.
 - (i) Within five working days after the receipt of monitoring results, the employer shall notify each employee in writing of the results which represent that employee's exposure.
 - (ii) Whenever the results indicate that the representative employee exposure exceeds the permissible exposure limits, the employer shall include in the written notice a statement that the permissible exposure limits were exceeded and a description of the corrective action being taken to reduce exposure to or below the permissible exposure limits.
- (f) Accuracy of measurement. The method of measurement of employee exposures shall be accurate, to a confidence level of 95 percent, to within plus or minus 25 percent for concentrations of AN at or above the permissible exposure limits, and plus or minus 35 percent for concentrations of AN between the action level and the permissible exposure limits.
- (g) Weekly survey of operations involving liquid AN. In addition to monitoring of employee exposures to AN as otherwise required by this subsection, the employer shall survey areas of operations involving liquid AN at least weekly to detect points where AN liquid or vapor are being released into the workplace. The survey shall employ an infra-red gas analyzer calibrated for AN, a multipoint gas chromatographic monitor, or comparable system for detection of AN. A listing of levels detected and areas of AN release, as determined from the survey, shall be posted prominently in the workplace, and shall remain posted until the next survey is completed.

(6) **Regulated areas.**

- (a) The employer shall establish regulated areas where AN concentrations are in excess of the permissible exposure limits.
- (b) Regulated areas shall be demarcated and segregated from the rest of the workplace, in any manner that minimizes the number of persons who will be exposed to AN.
- (c) Access to regulated areas shall be limited to authorized persons or to persons otherwise authorized by the act or regulations issued pursuant thereto.
- (d) The employer shall assure that in the regulated area, food or beverages are not present or consumed, smoking products are not present or used, and cosmetics are not applied, (except that these activities may be conducted in the lunchrooms, change rooms and showers required under subsections (13)(a)-(13)(c) of this section.

(7) **Methods of compliance.**

- (a) Engineering and work-practice controls.
 - (i) The employer shall institute engineering or work-practice controls to reduce and maintain employee exposures to AN, to or below the permissible exposure limits, except to the extent that the employer establishes that such controls are not feasible.
 - (ii) Wherever the engineering and work-practice controls which can be instituted are not sufficient to reduce employee exposures to or below the permissible exposure limits, the employer shall nonetheless use them to reduce exposures to the lowest levels achievable by these controls and shall supplement them by the use of respiratory protection which complies with the requirements of subsection (8) of this section.
- (b) Compliance program.
 - (i) The employer shall establish and implement a written program to reduce employee exposures to or below the permissible exposure limits solely by means of engineering and work-practice controls, as required by subsection (7)(a) of this section.
 - (ii) Written plans for these compliance programs shall include at least the following:
 - (A) A description of each operation or process resulting in employee exposure to AN above the permissible exposure limits;
 - (B) Engineering plans and other studies used to determine the controls for each process;
 - (C) A report of the technology considered in meeting the permissible exposure limits;
 - (D) A detailed schedule for the implementation of engineering or work-practice controls; and
 - (E) Other relevant information.
 - (iii) The employer shall complete the steps set forth in the compliance program by the dates in the schedule.
 - (iv) Written plans for such a program shall be submitted upon request to the director, and shall be available at the worksite for examination and copying by the director, or any affected employee or representative.
 - (v) The plans required by this subsection shall be revised and updated at least every six months to reflect the current status of the program.

(8) **Respiratory protection.**

- (a) General. For employees who use respirators required by this section, the employer must provide respirators that comply with the requirements of this subsection. Respirators must be used during:
 - (i) Periods necessary to install or implement feasible engineering and work-practice controls;

- (ii) Work operations, such as maintenance and repair activities or reactor cleaning, for which the employer establishes that engineering and work-practice controls are not feasible:
- (iii) Work operations for which feasible engineering and work-practice controls are not yet sufficient to reduce employee exposure to or below the permissible exposure limits;
- (iv) Emergencies.
- (b) Respirator program. The employer must implement a respiratory protection program in accordance with chapter 296-62 WAC, Part E (except WAC 296-62-07130(1) and 296-62-07150 through 296-62-07156).
- (c) Respirator selection. The employer must select the appropriate respirator from Table I of this subsection.

TABLE I RESPIRATORY PROTECTION FOR ACRYLONITRILE (AN)

Conc	centration of AN or Condition of Use	Respirator Type	
(a)	Less than or equal to 25 x permissible exposure limits.	(i)	Any Type C supplied-air respirator
(b)	Less than or equal to 100 x permissible exposure limits.	(i)	Any supplied-air respirator with full facepiece, or
		(ii)	Any self-contained breathing apparatus with full facepiece.
(c)	Less than or equal to 250 x permissible exposure limits.	(i)	Supplied-air respirator in positive- pressure mode with full facepiece, helmet, hood, or suit.
(d)	Greater than 250 x permissible exposure limits.	(i)	supplied-air respirator with full facepiece and an auxiliary self- contained air supply, operated in pressure-demand mode; or
		(ii) positive	Open circuit self-contained breathing apparatus with full facepiece in pressure mode.
(e)	Emergency entry into unknown concentration or firefighting.	(i)	Any self-contained breathing apparatus with full facepiece in positive-pressure mode.
(f)	Escape.	(i)	Any organic vapor gas mask; or
		(ii)	Any self-contained breathing.

(9) **Emergency situations.**

- (a) Written plans.
 - (i) A written plan for emergency situations shall be developed for each workplace where AN is present. Appropriate portions of the plan shall be implemented in the event of an emergency.
 - (ii) The plan shall specifically provide that employees engaged in correcting emergency conditions shall be equipped as required in subsection (8) of this section until the emergency is abated.

- (b) Alerting employees.
 - (i) Where there is the possibility of employee exposure to AN in excess of the ceiling limit due to the occurrence of an emergency, a general alarm shall be installed and maintained to promptly alert employees of such occurrences.
 - (ii) Employees not engaged in correcting the emergency shall be evacuated from the area and shall not be permitted to return until the emergency is abated.

(10) **Protective clothing and equipment.**

- (a) Provision and use. Where eye or skin contact with liquid AN or PAN may occur, the employer shall provide at no cost to the employee, and assure that employees wear, appropriate protective clothing or other equipment in accordance with WAC 296-800-160 to protect any area of the body which may come in contact with liquid AN or PAN.
- (b) Cleaning and replacement.
 - (i) The employer shall clean, launder, maintain, or replace protective clothing and equipment required by this subsection, as needed to maintain their effectiveness.
 - In addition, the employer shall provide clean protective clothing and equipment at least weekly to each affected employee.
 - (ii) The employer shall assure that impermeable protective clothing which contacts or is likely to have contacted liquid AN shall be decontaminated before being removed by the employee.
 - (iii) The employer shall assure that AN- or PAN-contaminated protective clothing and equipment is placed and stored in closable containers which prevent dispersion of the AN or PAN outside the container.
 - (iv) The employer shall assure that an employee whose nonimpermeable clothing becomes wetted with liquid AN shall immediately remove that clothing and proceed to shower. The clothing shall be decontaminated before it is removed from the regulated area.
 - (v) The employer shall assure that no employee removes AN- or PAN-contaminated protective equipment or clothing from the change room, except for those employees authorized to do so for the purpose of laundering, maintenance, or disposal.
 - (vi) The employer shall inform any person who launders or cleans AN-or PAN-contaminated protective clothing or equipment of the potentially harmful effects of exposure to AN.
 - (vii) The employer shall assure that containers of contaminated protective clothing and equipment which are to be removed from the workplace for any reason are labeled in accordance with subsection (16)(c)(ii) of this section, and that such labels remain affixed when such containers leave the employer's workplace.

(11) Housekeeping.

- (a) All surfaces shall be maintained free of accumulations of liquid AN and of PAN.
- (b) For operations involving liquid AN, the employer shall institute a program for detecting leaks and spills of liquid AN, including regular visual inspections.

- (c) Where spills of liquid AN are detected, the employer shall assure that surfaces contacted by the liquid AN are decontaminated. Employees not engaged in decontamination activities shall leave the area of the spill, and shall not be permitted in the area until decontamination is completed.
- (d) Liquids. Where AN is present in a liquid form, or as a resultant vapor, all containers or vessels containing AN shall be enclosed to the maximum extent feasible and tightly covered when not in use, with adequate provision made to avoid any resulting potential explosion hazard.
- (e) Surfaces.
 - (i) Dry sweeping and the use of compressed air for the cleaning of floors and other surfaces where AN and PAN are found is prohibited.
 - (ii) Where vacuuming methods are selected, either portable units or a permanent system may be used.
 - (A) If a portable unit is selected, the exhaust shall be attached to the general workplace exhaust ventilation system or collected within the vacuum unit, equipped with high efficiency filters or other appropriate means of contaminant removal, so that AN is not reintroduced into the workplace air; and
 - (B) Portable vacuum units used to collect AN may not be used for other cleaning purposes and shall be labeled as prescribed by subsection (16)(c)(ii) of this section.
 - (iii) Cleaning of floors and other contaminated surfaces may not be performed by washing down with a hose, unless a fine spray has first been laid down.
- (12) **Waste disposal.** AN and PAN waste, scrap, debris, bags, containers or equipment, shall be disposed of in sealed bags or other closed containers which prevent dispersion of AN outside the container, and labeled as prescribed in subsection (16)(c)(ii) of this section.
- (13) **Hygiene facilities and practices.** Where employees are exposed to airborne concentrations of AN above the permissible exposure limits, or where employees are required to wear protective clothing or equipment pursuant to subsection (11) of this section, or where otherwise found to be appropriate, the facilities required by WAC 296-24-12009 and 296-800-230 shall be provided by the employer for the use of those employees, and the employer shall assure that the employees use the facilities provided. In addition, the following facilities or requirements are mandated.
 - (a) Change rooms. The employer shall provide clean change rooms in accordance with WAC 296-24-12011.
 - (b) Showers.
 - (i) The employer shall provide shower facilities in accordance with WAC 296-24-12009(3).
 - (ii) In addition, the employer shall also assure that employees exposed to liquid AN and PAN shower at the end of the work shift.
 - (iii) The employer shall assure that, in the event of skin or eye exposure to liquid AN, the affected employee shall shower immediately to minimize the danger of skin absorption.

- (c) Lunchrooms.
 - (i) Whenever food or beverages are consumed in the workplace, the employer shall provide lunchroom facilities which have a temperature controlled, positive pressure, filtered air supply, and which are readily accessible to employees exposed to AN above the permissible exposure limits.
 - (ii) In addition, the employer shall also assure that employees exposed to AN above the permissible exposure limits wash their hands and face prior to eating.

(14) Medical surveillance.

- (a) General.
 - (i) The employer shall institute a program of medical surveillance for each employee who is or will be exposed to AN above the action level. The employer shall provide each such employee with an opportunity for medical examinations and tests in accordance with this subsection.
 - (ii) The employer shall assure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and shall be provided without cost to the employee.
- (b) Initial examinations. At the time of initial assignment, or upon institution of the medical surveillance program, the employer shall provide each affected employee an opportunity for a medical examination, including at least the following elements:
 - (i) A work history and medical history with special attention to skin, respiratory, and gastrointestinal systems, and those non-specific symptoms, such as headache, nausea, vomiting, dizziness, weakness, or other central nervous system dysfunctions that may be associated with acute or chronic exposure to AN.
 - (ii) A physical examination giving particular attention to central nervous system, gastrointestinal system, respiratory system, skin and thyroid.
 - (iii) A "14 x 17" posteroanterior chest x-ray.
 - (iv) Further tests of the intestinal tract, including fecal occult blood screening, and proctosigmoidoscopy, for all workers 40 years of age or older, and for any other affected employees for whom, in the opinion of the physician, such testing is appropriate.
- (c) Periodic examinations.
 - (i) The employer shall provide examinations specified in this subsection at least annually for all employees specified in subsection (14)(a) of this section.
 - (ii) If an employee has not had the examinations prescribed in subsection (14)(b) of this section within six months of termination of employment, the employer shall make such examination available to the employee upon such termination.
- (d) Additional examinations. If the employee for any reason develops signs or symptoms commonly associated with exposure to AN, the employer shall provide appropriate examination and emergency medical treatment.

- (e) Information provided to the physician. The employer shall provide the following information to the examining physician:
 - (i) A copy of this standard and its appendices;
 - (ii) A description of the affected employee's duties as they relate to the employee's exposure;
 - (iii) The employee's representative exposure level;
 - (iv) The employee's anticipated or estimated exposure level (for preplacement examinations or in cases of exposure due to an emergency);
 - (v) A description of any personal protective equipment used or to be used; and
 - (vi) Information from previous medical examinations of the affected employee, which is not otherwise available to the examining physician.
- (f) Physician's written opinion.
 - (i) The employer shall obtain a written opinion from the examining physician which shall include:
 - (A) The results of the medical examination and test performed;
 - (B) The physician's opinion as to whether the employee has any detected medical condition which would place the employee at an increased risk of material impairment of the employee's health from exposure to AN;
 - (C) Any recommended limitations upon the employee's exposure to AN or upon the use of protective clothing and equipment such as respirators; and
 - (D) A statement that the employee has been informed by the physician of the results of the medical examination and any medical conditions which require further examination or treatment.
 - (ii) The employer shall instruct the physician not to reveal in the written opinion specific findings or diagnoses unrelated to occupational exposure to AN.
 - (iii) The employer shall provide a copy of the written opinion to the affected employee.

(15) Employee information and training.

- (a) Training program.
 - (i) The employer shall institute a training program for all employees where there is occupational exposure to AN and shall assure their participation in the training program.
 - (ii) The training program shall be provided at the time of initial assignment, or upon institution of the training program, and at least annually thereafter, and the employer shall assure that each employee is informed of the following:
 - (A) The information contained in Appendices A, B and C;

- (B) The quantity, location, manner of use, release or storage of AN and the specific nature of operations which could result in exposure to AN, as well as any necessary protective steps;
- (C) The purpose, proper use, and limitations of respirators and protective clothing;
- (D) The purpose and a description of the medical surveillance program required by subsection (14) of this section;
- (E) The emergency procedures developed, as required by subsection (9) of this section: and
- (F) The engineering and work-practice controls, their function and the employee's relationship thereto; and
- (G) A review of this standard.
- (b) Access to training materials.
 - (i) The employer shall make a copy of this standard and its appendices readily available to all affected employees.
 - (ii) The employer shall provide, upon request, all materials relating to the employee information and training program to the director.

(16) Signs and labels.

- (a) General.
 - (i) The employer may use labels or signs required by other statutes, regulations, or ordinances in addition to, or in combination with, signs and labels required by this subsection.
 - (ii) The employer shall assure that no statement appears on or near any sign or label, required by this subsection, which contradicts or detracts from such effects of the required sign or label.
- (b) Signs.
 - (i) The employer shall post signs to clearly indicate all workplaces where AN concentrations exceed the permissible exposure limits. The signs shall bear the following legend:

DANGER ACRYLONITRILE (AN) CANCER HAZARD AUTHORIZED PERSONNEL ONLY RESPIRATORS REQUIRED

- (ii) The employer shall assure that signs required by this subsection are illuminated and cleaned as necessary so that the legend is readily visible.
- (c) Labels.

- (i) The employer shall assure that precautionary labels are affixed to all containers of AN, and to containers of PAN and products fabricated from PAN, except for those materials for which objective data is provided as to the conditions specified in subsection (1)(b) of this section. The employer shall assure that the labels remain affixed when the AN or PAN are sold, distributed or otherwise leave the employer's workplace.
- (ii) The employer shall assure that the precautionary labels required by this subsection are readily visible and legible. The labels shall bear the following legend:

DANGER CONTAINS ACRYLONITRILE (AN) CANCER HAZARD

(17) **Recordkeeping.**

- (a) Objective data for exempted operations.
 - (i) Where the processing, use, and handling of products fabricated from PAN are exempted pursuant to subsection (1)(b) of this section, the employer shall establish and maintain an accurate record of objective data reasonably relied upon in support of the exemption.
 - (ii) This record shall include the following information:
 - (A) The relevant condition in subsection (1)(b) upon which exemption is based;
 - (B) The source of the objective data;
 - (C) The testing protocol, results of testing, and/or analysis of the material for the release of AN;
 - (D) A description of the operation exempted and how the data supports the exemption; and
 - (E) Other data relevant to the operations, materials, and processing covered by the exemption.
 - (iii) The employer shall maintain this record for the duration of the employer's reliance upon such objective data.
- (b) Exposure monitoring.
 - (i) The employer shall establish and maintain an accurate record of all monitoring required by subsection (5) of this section.
 - (ii) This record shall include:
 - (A) The dates, number, duration, and results of each of the samples taken, including a description of the sampling procedure used to determine representative employee exposure;
 - (B) A description of the sampling and analytical methods used and the data relied upon to establish that the methods used meet the accuracy and precision requirements of subsection (5)(f) of this section;

- (C) Type of respiratory protective devices worn, if any; and
- (D) Name, social security number and job classification of the employee monitored and of all other employees whose exposure the measurement is intended to represent.
- (iii) The employer shall maintain this record for at least 40 years or the duration of employment plus 20 years, whichever is longer.
- (c) Medical surveillance.
 - (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance as required by subsection (14) of this section.
 - (ii) This record shall include:
 - (A) A copy of the physicians' written opinions;
 - (B) Any employee medical complaints related to exposure to AN;
 - (C) A copy of the information provided to the physician as required by subsection (14)(f) of this section; and
 - (D) A copy of the employee's medical and work history.
 - (iii) The employer shall assure that this record be maintained for at least forty years or for the duration of employment plus twenty years, whichever is longer.
- (d) Availability.
 - (i) The employer shall assure that all records required to be maintained by this section be made available upon request to the director for examination and copying.
 - (ii) Records required by subdivisions (a) through (c) of this subsection shall be provided upon request to employees, designated representatives, and the assistant director in accordance with WAC 296-62-05201 through 296-62-05209 and 296-62-05213 through 296-62-05217. Records required by subdivision (a) of this section shall be provided in the same manner as exposure monitoring records.
 - (iii) The employer shall assure that employee medical records required to be maintained by this section, be made available, upon request, for examination and copying, to the affected employee or former employee, or to a physician designated by the affected employee, former employee, or designated representative.
- (e) Transfer of records.
 - (i) Whenever the employer ceases to do business, the successor employer shall receive and retain all records required to be maintained by this section.
 - (ii) Whenever the employer ceases to do business and there is no successor employer to receive and retain the records for the prescribed period, these records shall be transmitted to the director.

- (iii) At the expiration of the retention period for the records required to be maintained pursuant to this section, the employer shall transmit these records to the director.
- (iv) The employer shall also comply with any additional requirements involving transfer of records set forth in WAC 296-62-05215.

(18) **Observation of monitoring.**

- (a) Employee observation. The employer shall provide affected employees, or their designated representatives, an opportunity to observe any monitoring of employee exposure to AN conducted pursuant to subsection (5) of this section.
- (b) Observation procedures.
 - (i) Whenever observation of the monitoring of employee exposure to AN requires entry into an area where the use of protective clothing or equipment is required, the employer shall provide the observer with personal protective clothing or equipment required to be worn by employees working in the area, assure the use of such clothing and equipment, and require the observer to comply with all other applicable safety and health procedures.
 - (ii) Without interfering with the monitoring, observers shall be entitled:
 - (A) To receive an explanation of the measurement procedures;
 - (B) To observe all steps related to the measurement of airborne concentrations of AN performed at the place of exposure; and
 - (C) To record the results obtained.
- (19) Appendices. The information contained in the appendices is not intended, by itself, to create any additional obligation not otherwise imposed, or to detract from any obligation.

 [Statutory Authority: RCW 49.17.010, .040, .050. 01-11-038 (Order 99-36), § 296-62-07336, filed 05/09/01, effective 09/01/01. Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10) § 296-62-07336, filed 05/04/99, effective 09/01/99.] Statutory Authority: Chapter 49.17 RCW. 88-11-021 (Order 88-04), § 296-62-07336, filed 5/11/88.]

WAC 296-62-07337 Appendix A--Substance safety data sheet for acrylonitrile.

(1) **Substance identification.**

- (a) Substance: Acrylonitrile (CH2 CHCN).
- (b) Synonyms: Propenenitrile; vinyl cyanide; cyanoethylene; AN; VCN; acylon; carbacryl; fumigrian; ventox.
- (c) Acrylonitrile can be found as a liquid or vapor, and can also be found in polymer resins, rubbers, plastics, polyols, and other polymers having acrylonitrile as a raw or intermediate material.
- (d) AN is used in the manufacture of acrylic and modiacrylic fibers, acrylic plastics and resins, speciality polymers, nitrile rubbers, and other organic chemicals. It has also been used as a fumigant.
- (e) Appearance and odor: Colorless to pale yellow liquid with a pungent odor which can only be detected at concentrations above the permissible exposure level, in a range of 13-19 parts AN per million parts of air (13-19 ppm).

(f) Permissible exposure: Exposure may not exceed either:

- (i) Two parts AN per million parts of air (2 ppm) averaged over the eight-hour workday; or
- (ii) Ten parts AN per million parts of air (10 ppm) averaged over any fifteen-minute period in the workday.
- (iii) In addition, skin and eye contact with liquid AN is prohibited.

(2) Health hazard data.

- (a) Acrylonitrile can affect your body if you inhale the vapor (breathing), if it comes in contact with your eyes or skin, or if you swallow it. It may enter your body through your skin.
- (b) Effects of overexposure:
 - (i) Short-term exposure: Acrylonitrile can cause eye irritation, nausea, vomiting, headache, sneezing, weakness, and light-headedness. At high concentrations, the effects of exposure may go on to loss of consciousness and death. When acrylonitrile is held in contact with the skin after being absorbed into shoe leather or clothing, it may produce blisters following several hours of no apparent effect. Unless the shoes or clothing are removed immediately and the area washed, blistering will occur. Usually there is no pain or inflammation associated with blister formation.
 - (ii) Long-term exposure: Acrylonitrile has been shown to cause cancer in laboratory animals and has been associated with higher incidences of cancer in humans. Repeated or prolonged exposure of the skin to acrylonitrile may produce irritation and dermatitis.
 - (iii) Reporting signs and symptoms: You should inform your employer if you develop any signs or symptoms and suspect they are caused by exposure to acrylonitrile.

(3) Emergency first aid procedures.

- (a) Eye exposure: If acrylonitrile gets into your eyes, wash your eyes immediately with large amounts of water, lifting the lower and upper lids occasionally. Get medical attention immediately. Contact lenses should not be worn when working with this chemical.
- (b) Skin exposure: If acrylonitrile gets on your skin, immediately wash the contaminated skin with water. If acrylonitrile soaks through your clothing, especially your shoes, remove the clothing immediately and wash the skin with water. If symptoms occur after washing, get medical attention immediately. Thoroughly wash the clothing before reusing. Contaminated leather shoes or other leather articles should be discarded.
- (c) Inhalation: If you or any other person breathes in large amounts of acrylonitrile, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible.
- (d) Swallowing: When acrylonitrile has been swallowed, give the person large quantities of water immediately. After the water has been swallowed, try to get the person to vomit by having him touch the back of his throat with his finger. Do not make an unconscious person vomit. Get medical attention immediately.
- (e) Rescue: Move the affected person from the hazardous exposure. If the exposed person has been overcome, notify someone else and put into effect the established emergency procedures. Do not become a casualty yourself. Understand your emergency rescue procedures and know the location of the emergency equipment before the need arises.

(f) Special first aid procedures: First aid kits containing an adequate supply (at least two dozen) of amyl nitrite pearls, each containing 0.3 ml, should be maintained at each site where acrylonitrile is used. When a person is suspected of receiving an overexposure to acrylonitrile, immediately remove that person from the contaminated area using established rescue procedures. Contaminated clothing must be removed and the acrylonitrile washed from the skin immediately. Artificial respiration should be started at once if breathing has stopped. If the person is unconscious, amyl nitrite may be used as an antidote by a properly trained individual in accordance with established emergency procedures. Medical aid should be obtained immediately.

(4) Respirators and protective clothing.

- (a) Respirators: You may be required to wear a respirator for nonroutine activities, in emergencies, while your employer is in the process of reducing acrylonitrile exposures through engineering controls, and in areas where engineering controls are not feasible. If respirators are worn, they must have a label issued by the National Institute for Occupational Safety and Health under the provisions of 42 CFR part 84 stating that the respirators have been certified for use with organic vapors. For effective protection, respirators must fit your face and head snugly. Respirators should not be loosened or removed in work situations where their use is required.
- (b) Supplied-air suits: In some work situations, the wearing of supplied-air suits may be necessary. Your employer must instruct you in their proper use and operation.
- (c) Protective clothing:
 - (i) You must wear impervious clothing, gloves, face shield, or other appropriate protective clothing to prevent skin contact with liquid acrylonitrile. Where protective clothing is required, your employer is required to provide clean garments to you as necessary to assume that the clothing protects you adequately.
 - (ii) Replace or repair impervious clothing that has developed leaks.
 - (iii) Acrylonitrile should never be allowed to remain on the skin. Clothing and shoes which are not impervious to acrylonitrile should not be allowed to become contaminated with acrylonitrile, and if they do the clothing and shoes should be promptly removed and decontaminated. The clothing should be laundered or discarded after the AN is removed. Once acrylonitrile penetrates shoes or other leather articles, they should not be worn again.
- (d) Eye protection: You must wear splashproof safety goggles in areas where liquid acrylonitrile may contact your eyes. In addition, contact lenses should not be worn in areas where eye contact with acrylonitrile can occur.

(5) Precautions for safe use, handling, and storage.

- (a) Acrylonitrile is a flammable liquid, and its vapors can easily form explosive mixtures in air.
- (b) Acrylonitrile must be stored in tightly closed containers in a cool, well-ventilated area, away from heat, sparks, flames, strong oxidizers (especially bromine), strong bases, copper, copper alloys, ammonia, and amines.
- (c) Sources of ignition such as smoking and open flames are prohibited wherever acrylonitrile is handled, used, or stored in a manner that could create a potential fire or explosion hazard.

- (d) You should use nonsparking tools when opening or closing metal containers of acrylonitrile, and containers must be bonded and grounded when pouring or transferring liquid acrylonitrile.
- (e) You must immediately remove any nonimpervious clothing that becomes wetted with acrylonitrile, and this clothing must not be reworn until the acrylonitrile is removed from the clothing.
- (f) Impervious clothing wet with liquid acrylonitrile can be easily ignited. This clothing must be washed down with water before you remove it.
- (g) If your skin becomes wet with liquid acrylonitrile, you must promptly and thoroughly wash or shower with soap or mild detergent to remove any acrylonitrile from your skin.
- (h) You must not keep food, beverages, or smoking materials, nor are you permitted to eat or smoke in regulated areas where acrylonitrile concentrations are above the permissible exposure limits.
- (i) If you contact liquid acrylonitrile, you must wash your hands thoroughly with soap or mild detergent and water before eating, smoking, or using toilet facilities.
- (j) Fire extinguishers and quick drenching facilities must be readily available, and you should know where they are and how to operate them.
- (k) Ask your supervisor where acrylonitrile is used in your work area and for any additional plant safety and health rules.

(6) Access to information.

- (a) Each year, your employer is required to inform you of the information contained in this Substance Safety Data Sheet for acrylonitrile. In addition, your employer must instruct you in the proper work-practices for using acrylonitrile, emergency procedures, and the correct use of protective equipment.
- (b) Your employer is required to determine whether you are being exposed to acrylonitrile. You or your representative has the right to observe employee measurements and to record the results obtained. Your employer is required to inform you of your exposure. If your employer determines that you are being overexposed, he or she is required to inform you of the actions which are being taken to reduce your exposure to within permissible exposure limits.
- (c) Your employer is required to keep records of your exposures and medical examinations. These records must be kept by the employer for at least forty years or for the period of your employment plus twenty years, whichever is longer.
- (d) Your employer is required to release your exposure and medical records to you or your representative upon your request.

[Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10) § 296-62-07337, filed 05/04/99, effective 09/01/99.] Statutory Authority: Chapter 49.17 RCW. 94-15-096 (Order 94-07), § 296-62-07337, filed 7/20/94, effective 9/20/94; 88-11-021 (Order 88-04), § 296-62-07337, filed 5/11/88.]

WAC 296-62-07338 Appendix B--Substance technical guidelines for acrylonitrile.

(1) Physical and chemical data.

- (a) Substance identification:
 - (i) Synonyms: AN; VCN; vinyl cyanide; propenenitrile; cyanoethylene; Acrylon; Carbacryl; Fumigrain; Ventox.

- (ii) Formula: CH2 = CHCN.
- (iii) Molecular weight: 53.1.
- (b) Physical data:
 - (i) Boiling point (760 mm Hg): 77.3°C (171°F);
 - (ii) Specific gravity (water = 1): 0.81 (at 20° C or 68° F);
 - (iii) Vapor density (air = 1 at boiling point of acrylonitrile): 1.83;
 - (iv) Melting point: -83°C (-117°F);
 - (v) Vapor pressure (@20°F): 83 mm Hg;
 - (vi) Solubility in water, percent by weight @20°C (68°F): 7.35;
 - (vii) Evaporation rate (Butyl Acetate = 1): 4.54; and
 - (viii) Appearance and odor: Colorless to pale yellow liquid with a pungent odor at concentrations above the permissible exposure level. Any detectable odor of acrylonitrile may indicate overexposure.
- (2) Fire, explosion, and reactivity hazard data.
 - (a) Fire:
 - (i) Flash point: -1°C (30°F) (closed cup).
 - (ii) Autoignition temperature: 481°C (898°F).
 - (iii) Flammable limits air, percent by volume: Lower: 3, Upper: 17.
 - (iv) Extinguishing media: Alcohol foam, carbon dioxide, and dry chemical.
 - (v) Special fire-fighting procedures: Do not use a solid stream of water, since the stream will scatter and spread the fire. Use water to cool containers exposed to a fire.
 - (vi) Unusual fire and explosion hazards: Acrylonitrile is a flammable liquid. Its vapors can easily form explosive mixtures with air. All ignition sources must be controlled where acrylonitrile is handled, used, or stored in a manner that could create a potential fire or explosion hazard. Acrylonitrile vapors are heavier than air and may travel along the ground and be ignited by open flames or sparks at locations remote from the site at which acrylonitrile is being handled.
 - (vii) For purposes of compliance with the requirements of WAC 296-800-300, acrylonitrile is classified as a Class IB flammable liquid. For example, 7,500 ppm, approximately onefourth of the lower flammable limit, would be considered to pose a potential fire and explosion hazard.
 - (viii) For purposes of compliance with WAC 296-24-59207, acrylonitrile is classified as a Class B fire hazard.

(ix) For purpose of compliance with WAC 296-24-95613, locations classified as hazardous due to the presence of acrylonitrile shall be Class I, Group D.

(b) Reactivity:

- (i) Conditions contributing to instability: Acrylonitrile will polymerize when hot, and the additional heat liberated by the polymerization may cause containers to explode. Pure AN may self-polymerize, with a rapid build-up of pressure, resulting in an explosion hazard. Inhibitors are added to the commercial product to prevent self-polymerization.
- (ii) Incompatibilities: Contact with strong oxidizers (especially bromine) and strong bases may cause fires and explosions. Contact with copper, copper alloys, ammonia, and amines may start serious decomposition.
- (iii) Hazardous decomposition products: Toxic gases and vapors (such as hydrogen cyanide, oxides of nitrogen, and carbon monoxide) may be released in a fire involving acrylonitrile and certain polymers made from acrylonitrile.
- (iv) Special precautions: Liquid acrylonitrile will attack some forms of plastics, rubbers, and coatings.

(3) Spill, leak, and disposal procedures.

- (a) If acrylonitrile is spilled or leaked, the following steps should be taken:
 - (i) Remove all ignition sources.
 - (ii) The area should be evacuated at once and re-entered only after the area has been thoroughly ventilated and washed down with water.
 - (iii) If liquid acrylonitrile or polymer intermediate, collect for reclamation or absorb in paper, vermiculite, dry sand, earth, or similar material, or wash down with water into process sewer system.
- (b) Persons not wearing protective equipment should be restricted from areas of spills or leaks until clean-up has been completed.
- (c) Waste disposal methods: Waste materials shall be disposed of in a manner that is not hazardous to employees or to the general population. Spills of acrylonitrile and flushing of such spills shall be channeled for appropriate treatment or collection for disposal. They shall not be channeled directly into the sanitary sewer system. In selecting the method of waste disposal, applicable local, state, and federal regulations should be consulted.

(4) Monitoring and measurement procedures.

- (a) Exposure above the permissible exposure limit:
 - (i) Eight-hour exposure evaluation: Measurements taken for the purpose of determining employee exposure under this section are best taken so that the average eight-hour exposure may be determined from a single eight-hour sample or two four-hour samples.

Air samples should be taken in the employee's breathing zone (air that would most nearly represent that inhaled by the employee).

- (ii) Ceiling evaluation: Measurements taken for the purpose of determining employee exposure under this section must be taken during periods of maximum expected airborne concentrations of acrylonitrile in the employee's breathing zone. A minimum of three measurements should be taken on one work shift. The average of all measurements taken is an estimate of the employee's ceiling exposure.
- (iii) Monitoring techniques: The sampling and analysis under this section may be performed by collecting the acrylonitrile vapor on charcoal adsorption tubes or other composition adsorption tubes, with subsequent chemical analysis. Sampling and analysis may also be performed by instruments such as real-time continuous monitoring systems, portable direct-reading instruments, or passive dosimeters. Analysis of resultant samples should be by gas chromatograph.
- (iv) Appendix D lists methods of sampling and analysis which have been tested by NIOSH and OSHA for use with acrylonitrile. NIOSH and OSHA have validated modifications of NIOSH Method S-156 (see Appendix D) under laboratory conditions for concentrations below 1 ppm. The employer has the obligation of selecting a monitoring method which meets the accuracy and precision requirements of the standard under his/her unique field conditions. The standard requires that methods of monitoring must be accurate, to a 95-percent confidence level, to ±35-percent for concentrations of AN at or above 2 ppm, and to ±50-percent for concentrations below 2 ppm. In addition to the methods described in Appendix D, there are numerous other methods available for monitoring for AN in the workplace. Details on these other methods have been submitted by various companies to the rulemaking record, and are available at the OSHA Docket Office.
- (b) Since many of the duties relating to employee exposure are dependent on the results of monitoring and measuring procedures, employers shall assure that the evaluation of employee exposures is performed by a competent industrial hygienist or other technically qualified person.

(5) **Protective clothing.**

- (a) Employees shall be provided with and required to wear appropriate protective clothing to prevent any possibility of skin contact with liquid AN. Because acrylonitrile is absorbed through the skin, it is important to prevent skin contact with liquid AN. Protective clothing shall include impermeable coveralls or similar full-body work clothing, gloves, head-coverings, as appropriate to protect areas of the body which may come in contact with liquid AN.
- (b) Employers should ascertain that the protective garments are impermeable to acrylonitrile. Nonimpermeable clothing and shoes should not be allowed to become contaminated with liquid AN. If permeable clothing does become contaminated, it should be promptly removed, placed in a regulated area for removal of the AN, and not worn again until the AN is removed. If leather footwear or other leather garments become wet from acrylonitrile, they should be replaced and not worn again, due to the ability of leather to absorb acrylonitrile and hold it against the skin. Since there is no pain associated with the blistering which may result from skin contact with liquid AN, it is essential that the employee be informed of this hazard so that he or she can be protected.
- (c) Any protective clothing which has developed leaks or is otherwise found to be defective shall be repaired or replaced. Clean protective clothing shall be provided to the employee as necessary to assure its protectiveness. Whenever impervious clothing becomes wet with liquid AN, it shall be washed down with water before being removed by the employee. Employees are also required to wear splash-proof safety goggles where there is any possibility of acrylonitrile contacting the eyes.

Part G Carcinogens (Specific)

(6) **Housekeeping and hygiene facilities.** For purposes of complying with WAC 296-24-120, 296-800-220 and 296-800-230, the following items should be emphasized:

- (a) The workplace should be kept clean, orderly, and in a sanitary condition. The employer is required to institute a leak and spill detection program for operations involving liquid AN in order to detect sources of fugitive AN emissions.
- (b) Dry sweeping and the use of compressed air is unsafe for the cleaning of floors and other surfaces where liquid AN may be found.
- (c) Adequate washing facilities with hot and cold water are to be provided, and maintained in a sanitary condition. Suitable cleansing agents are also to be provided to assure the effective removal of acrylonitrile from the skin.
- (d) Change or dressing rooms with individual clothes storage facilities must be provided to prevent the contamination of street clothes with acrylonitrile. Because of the hazardous nature of acrylonitrile, contaminated protective clothing should be placed in a regulated area designated by the employer for removal of the AN before the clothing is laundered or disposed of.

(7) Miscellaneous precautions.

- (a) Store acrylonitrile in tightly-closed containers in a cool, well-ventilated area and take necessary precautions to avoid any explosion hazard.
- (b) High exposures to acrylonitrile can occur when transferring the liquid from one container to another.
- (c) Nonsparking tools must be used to open and close metal acrylonitrile containers. These containers must be effectively grounded and bonded prior to pouring.
- (d) Never store uninhibited acrylonitrile.
- (e) Acrylonitrile vapors are not inhibited.
 - They may form polymers and clog vents of storage tanks.
- (f) Use of supplied-air suits or other impervious coverings may be necessary to prevent skin contact with and provide respiratory protection from acrylonitrile where the concentration of acrylonitrile is unknown or is above the ceiling limit. Supplied-air suits should be selected, used, and maintained under the immediate supervision of persons knowledgeable in the limitations and potential life-endangering characteristics of supplied-air suits.
- (g) Employers shall advise employees of all areas and operations where exposure to acrylonitrile could occur.
- (8) **Common operations.** Common operations in which exposure to acrylonitrile is likely to occur include the following: Manufacture of the acrylonitrile monomer; synthesis of acrylic fibers, ABS, SAN, and nitrile barrier plastics and resins, nitrile rubber, surface coatings, specialty chemicals; use as a chemical intermediate; use as a fumigant; and in the cyanoethylation of cotton.

[Statutory Authority: RCW 49.17.010, .040, .050. 01-11-038 (Order 99-36), § 296-62-07338, filed 05/09/01, effective 09/01/01. Statutory Authority: Chapter 49.17 RCW. 88-11-021 (Order 88-04), § 296-62-07338, filed 5/11/88.]

WAC 296-62-07339 Appendix C--Medical surveillance guidelines for acrylonitrile.

- (1) **Route of entry.**
 - (a) Inhalation;

- (b) Skin absorption;
- (c) Ingestion.

(2) **Toxicology.**

- Acrylonitrile vapor is an asphyxiant due to inhibitory action on metabolic enzyme systems. (a) Animals exposed to 75 or 100 ppm for seven hours have shown signs of anoxia; in some animals which died at the higher level, cyanomethemoglobin was found in the blood. Two human fatalities from accidental poisoning have been reported; one was caused by inhalation of an unknown concentration of the vapor, and the other was thought to be caused by skin absorption or inhalation. Most cases of intoxication from industrial exposure have been mild, with rapid onset of eye irritation, headache, sneezing, and nausea. Weakness, lightheadedness, and vomiting may also occur. Exposure to high concentrations may produce profound weakness, asphyxia, and death. The vapor is a severe eye irritant. Prolonged skin contract with the liquid may result in absorption with systemic effects, and in the formation of large blisters after a latent period of several hours. Although there is usually little or no pain or inflammation, the affected skin resembles a second-degree thermal burn. Solutions spilled on exposed skin, or on areas covered only by a light layer of clothing, evaporate rapidly, leaving no irritation, or, at the most, mild transient redness. Repeated spills on exposed skin may result in dermatitis due to solvent effects.
- (b) Results after one year of a planned two-year animal study on the effects of exposure to acrylonitrile have indicated that rats ingesting as little as 35 ppm in their drinking water develop tumors of the central nervous system. The interim results of this study have been supported by a similar study being conducted by the same laboratory, involving exposure of rats by inhalation of acrylonitrile vapor, which has shown similar types of tumors in animals exposed to 80 ppm.
- (c) In addition, the preliminary results of an epidemiological study being performed by duPont on a cohort of workers in their Camden, S.C. acrylic fiber plant indicate a statistically significant increase in the incidence of colon and lung cancers among employees exposed to acrylonitrile.
- (3) **Signs and symptoms of acute overexposure.** Asphyxia and death can occur from exposure to high concentrations of acrylonitrile. Symptoms of overexposure include eye irritation, headache, sneezing, nausea and vomiting, weakness, and light-headedness. Prolonged skin contact can cause blisters on the skin with appearance of a second-degree burn, but with little or no pain. Repeated skin contact may produce scaling dermatitis.
- (4) **Treatment of acute overexposure.** Remove employee from exposure. Immediately flush eyes with water and wash skin with soap or mild detergent and water. If AN has been swallowed, and person is conscious, induce vomiting. Give artificial respiration if indicated. More severe cases, such as those associated with loss of consciousness, may be treated by the intravenous administration of sodium nitrite, followed by sodium thiosulfate, although this is not as effective for acrylonitrile poisoning as for inorganic cyanide poisoning.
- (5) Surveillance and preventive considerations.
 - (a) As noted above, exposure to acrylonitrile has been linked to increased incidence of cancers of the colon and lung in employees of the duPont acrylic fiber plant in Camden, S.C. In addition, the animal testing of acrylonitrile has resulted in the development of cancers of the central nervous system in rats exposed by either inhalation or ingestion. The physician should be aware of the findings of these studies in evaluating the health of employees exposed to acrylonitrile.

- (b) Most reported acute effects of occupational exposure to acrylonitrile are due to its ability to cause tissue anoxia and asphyxia. The effects are similar to those caused by hydrogen cyanide. Liquid acrylonitrile can be absorbed through the skin upon prolonged contact. The liquid readily penetrates leather, and will produce burns of the feet if footwear contaminated with acrylonitrile is not removed.
- (c) It is important for the physician to become familiar with the operating conditions in which exposure to acrylonitrile may occur. Those employees with skin diseases may not tolerate the wearing of whatever protective clothing may be necessary to protect them from exposure. In addition, those with chronic respiratory disease may not tolerate the wearing of negative-pressure respirators.
- (d) Surveillance and screening. Medical histories and laboratory examinations are required for each employee subject to exposure to acrylonitrile above the action level. The employer must screen employees for history of certain medical conditions which might place the employee at increased risk from exposure.
 - (i) Central nervous system dysfunction. Acute effects of exposure to acrylonitrile generally involve the central nervous system. Symptoms of acrylonitrile exposure include headache, nausea, dizziness, and general weakness. The animal studies cited above suggest possible carcinogenic effects of acrylonitrile on the central nervous system, since rats exposed by either inhalation or ingestion have developed similar CNS tumors.
 - (ii) Respiratory disease. The duPont data indicate an increased risk of lung cancer among employees exposed to acrylonitrile.
 - (iii) Gastrointestinal disease. The duPont data indicate an increased risk of cancer of the colon among employees exposed to acrylonitrile. In addition, the animal studies show possible tumor production in the stomachs of the rats in the ingestion study.
 - (iv) Skin disease. Acrylonitrile can cause skin burns when prolonged skin contact with the liquid occurs. In addition, repeated skin contact with the liquid can cause dermatitis.
- (e) General. The purpose of the medical procedures outlined in the standard is to establish a baseline for future health monitoring. Persons unusually susceptible to the effects of anoxia or those with anemia would be expected to be at increased risk. In addition to emphasis on the CNS, respiratory and gastro-intestinal systems, the cardiovascular system, liver, and kidney function should also be stressed.

[Statutory Authority: Chapter 49.17 RCW. 88-11-021 (Order 88-04), § 296-62-07339, filed 5/11/88.]

WAC 296-62-07340 Appendix D--Sampling and analytical methods for acrylonitrile.

- (1) There are many methods available for monitoring employee exposures to acrylonitrile. Most of these involve the use of charcoal tubes and sampling pumps, with analysis by gas chromatograph. The essential differences between the charcoal tube methods include, among others, the use of different desorbing solvents, the use of different lots of charcoal, and the use of different equipment for analysis of the samples.
- (2) Besides charcoal, considerable work has been performed on methods using porous polymer sampling tubes and passive dosimeters. In addition, there are several portable gas analyzers and monitoring units available on the open market.

Part G Carcinogens (Specific)

(3) This appendix contains details for the methods which have been tested at OSHA Analytical Laboratory in Salt Lake City, and NIOSH in Cincinnati. Each is a variation on NIOSH Method S-156, which is also included for reference. This does not indicate that these methods are the only ones which will be

satisfactory. There also may be workplace situations in which these methods are not adequate, due to such factors as high humidity. Copies of the other methods available to OSHA are available in the rulemaking record, and may be obtained from the OSHA docket office. These include, the Union Carbide, Monsanto, Dow Chemical and Dow Badische methods, as well as NIOSH Method P & CAM 127.

- (4) Employers who note problems with sample breakthrough should try larger charcoal tubes. Tubes of larger capacity are available, and are often used for sampling vinyl chloride. In addition, lower flow rates and shorter sampling times should be beneficial in minimizing breakthrough problems.
- (5) Whatever method the employer chooses, he must assure himself of the method's accuracy and precision under the unique conditions present in his workplace.
- (6) NIOSH Method S-156 (unmodified)

Analyte: Acrylonitrile.

Matrix: Air.

Procedure: Absorption on charcoal, desorption with methanol, GC.

- (a) Principle of the method. Reference (k)(i) of this subsection.
 - (i) A known volume of air is drawn through a charcoal tube to trap the organic vapors present.
 - (ii) The charcoal in the tube is transferred to a small, stoppered sample container, and the analyte is desorbed with methanol.
 - (iii) An aliquot of the desorbed sample is injected into a gas chromatograph.
 - (iv) The area of the resulting peak is determined and compared with areas obtained for standards.
- (b) Range and sensitivity.
 - (i) This method was validated over the range of 17.5-70.0 mg/cu m at an atmospheric temperature and pressure of 22°C and 760 mm Hg, using a twenty-liter sample. Under the conditions of sample size (20 liters) the probable useful range of this method is 4.5-135 mg/cu m. The method is capable of measuring much smaller amounts if the desorption efficiency is adequate. Desorption efficiency must be determined over the range used.
 - (ii) The upper limit of the range of the method is dependent on the adsorptive capacity of the charcoal tube. This capacity varies with the concentrations of acrylonitrile and other substances in the air. The first section of the charcoal tube was found to hold at least 3.97 mg of acrylonitrile when a test atmosphere containing 92.0 mg/cu m of acrylonitrile in air was sampled 0.18 liter per minute for 240 minutes; at that time the concentration of acrylonitrile in the effluent was less than 5 percent of that in the influent. (The charcoal tube consists of two sections of activated charcoal separated by a section of urethane foam.) See (f)(ii) of this subsection. If a particular atmosphere is suspected of containing a large amount of contaminant, a smaller sampling volume should be taken.

- (c) Interference.
 - (i) When the amount of water in the air is so great that condensation actually occurs in the tube, organic vapors will not be trapped efficiently. Preliminary experiments using toluene indicate that high humidity severely decreases the breakthrough volume.
 - (ii) When interfering compounds are known or suspected to be present in the air, such information, including their suspected identities, should be transmitted with the sample.
 - (iii) It must be emphasized that any compound which has the same retention time as the analyte at the operating conditions described in this method is an interference.Retention time data on a single column cannot be considered proof of chemical identity.
 - (iv) If the possibility of interference exists, separation conditions (column packing, temperature, etc.) must be changed to circumvent the problem.
- (d) Precision and accuracy.
 - (i) The coefficient of variation (CVt) for the total analytical and sampling method in the range of 17.5-70.0 mg/cu m was 0.073. This value corresponds to a 3.3 mg/cu m standard deviation at the (previous) OSHA standard level (20 ppm). Statistical information and details of the validation and experimental test procedures can be found in (k)(ii) of this subsection.
 - (ii) On the average the concentrations obtained at the 20 ppm level using the overall sampling and analytical method were 6.0 percent lower than the "true" concentrations for a limited number of laboratory experiments. Any difference between the "found" and "true" concentrations may not represent a bias in the sampling and analytical method, but rather a random variation from the experimentally determined "true" concentration. Therefore, no recovery correction should be applied to the final result in (j)(v) of this subsection.
- (e) Advantages and disadvantages of the method.
 - (i) The sampling device is small, portable, and involves no liquids. Interferences are minimal, and most of those which do occur can be eliminated by altering chromatographic conditions. The tubes are analyzed by means of a quick, instrumental method.
 - (ii) The method can also be used for the simultaneous analysis of two or more substances suspected to be present in the same sample by simply changing gas chromatographic conditions.
 - (iii) One disadvantage of the method is that the amount of sample which can be taken is limited by the number of milligrams that the tube will hold before overloading. When the sample value obtained for the backup section of the charcoal tube exceeds 25 percent of that found on the front section, the possibility of sample loss exists.
 - (iv) Furthermore, the precision of the method is limited by the reproducibility of the pressure drop across the tubes. This drop will affect the flow rate and cause the volume to be imprecise, because the pump is usually calibrated for one tube only.

- (f) Apparatus.
 - (i) A calibrated personal sampling pump whose flow can be determined within ± 5 percent at the recommended flow rate. Reference (k)(iii) of this subsection.
 - (ii) Charcoal tubes: Glass tubes with both ends flame sealed, 7 cm long with a 6 mm O.D. and a 4 mm I.D., containing 2 sections of 20/40 mesh activated charcoal separated by a 2 mm portion of urethane foam. The activated charcoal is prepared from coconut shells and is fired at 600°C prior to packing. The adsorbing section contains 100 mg of charcoal, the backup section 50 mg. A 3 mm portion of urethane foam is placed between the outlet end of the tube and the backup section. A plug of silicated glass wool is placed in front of the adsorbing section. The pressure drop across the tube must be less than 1 inch of mercury at a flow rate of 1 liter per minute.
 - (iii) Gas chromatograph equipped with a flame ionization detector.
 - (iv) Column (4 ft x 1/4 in stainless steel) packed with 50/80 mesh Poropak, type Q.
 - (v) An electronic integrator or some other suitable method for measuring peak areas.
 - (vi) Two-milliliter sample containers with glass stoppers or Teflon-lined caps. If an automatic sample injector is used, the associated vials may be used.
 - (vii) Microliter syringes: Ten-microliter and other convenient sizes for making standards.
 - (viii) Pipets: 1.0 ml delivery pipets.
 - (ix) Volumetric flask: 10 ml or convenient sizes for making standard solutions.
- (g) Reagents.
 - (i) Chromatographic quality methanol.
 - (ii) Acrylonitrile, reagent grade.
 - (iii) Hexane, reagent grade.
 - (iv) Purified nitrogen.
 - (v) Prepurified hydrogen.
 - (vi) Filtered compressed air.
- (h) Procedure.
 - (i) Cleaning of equipment. All glassware used for the laboratory analysis should be detergent washed and thoroughly rinsed with tap water and distilled water.
 - (ii) Calibration of personal pumps. Each personal pump must be calibrated with a representative charcoal tube in the line. This will minimize errors associated with uncertainties in the sample volume collected.
 - (iii) Collection and shipping of samples.

- (A) Immediately before sampling, break the ends of the tube to provide an opening at least one-half the internal diameter of the tube (2mm).
- (B) The smaller section of charcoal is used as a backup and should be positioned nearest the sampling pump.
- (C) The charcoal tube should be placed in a vertical direction during sampling to minimize channeling through the charcoal.
- (D) Air being sampled should not be passed through any hose or tubing before entering the charcoal tube.
- (E) A maximum sample size of 20 liters is recommended. Sample at a flow of 0.20 liter per minute or less. The flow rate should be known with an accuracy of at least ± 5 percent.
- (F) The temperature and pressure of the atmosphere being sampled should be recorded. If pressure reading is not available, record the elevation.
- (G) The charcoal tubes should be capped with the supplied plastic caps immediately after sampling. Under no circumstances should rubber caps be used.
- (H) With each batch of ten samples submit one tube from the same lot of tubes which was used for sample collection and which is subjected to exactly the same handling as the samples except that no air is drawn through it. Label this as a blank.
- (I) Capped tubes should be packed tightly and padded before they are shipped to minimize tube breakage during shipping.
- (J) A sample of the bulk material should be submitted to the laboratory in a glass container with a Teflon-lined cap. This sample should not be transported in the same container as the charcoal tubes.
- (iv) Analysis of samples.
 - (A) Preparation of samples. In preparation for analysis, each charcoal tube is scored with a file in front of the first section of charcoal and broken open. The glass wool is removed and discarded. The charcoal in the first (larger) section is transferred to a 2 ml stoppered sample container. The separating section of foam is removed and discarded; the second section is transferred to another stoppered container. These two sections are analyzed separately.
 - (B) Desorption of samples. Prior to analysis, 1.0 ml of methanol is pipetted into each sample container. Desorption should be done for 30 minutes. Tests indicate that this is adequate if the sample is agitated occasionally during this period. If an automatic sample injector is used, the sample vials should be capped as soon as the solvent is added to minimize volatilization.
 - (C) GC conditions. The typical operating conditions for the gas chromatograph are:
 - (I) 50 ml/min (60 psig) nitrogen carrier gas flow.

(II) 65 ml/min (24 psig) hydrogen gas flow to detector.

- (III) 500 ml/min (50 psig) air flow to detector.
- (IV) 235°C injector temperature.
- (V) 255°C manifold temperature (detector).
- (VI) 155°C column temperature.
- (D) Injection. The first step in the analysis is the injection of the sample into the gas chromatograph. To eliminate difficulties arising from blowback or distillation within the syringe needle, one should employ the solvent flush injection technique. The 10-microliter syringe is first flushed with solvent several times to wet the barrel and plunger. Three microliters of solvent are drawn into the syringe to increase the accuracy and reproducibility of the injected sample volume. The needle is removed from the solvent, and the plunger is pulled back about 0.2 microliter to separate the solvent flush from the sample with a pocket of air to be used as a marker. The needle is then immersed in the sample, and a five microliter aliquot is withdrawn, taking into consideration the volume of the needle, since the sample in the needle will be completely injected. After the needle is removed from the sample and prior to injection, the plunger is pulled back 1.2 microliters to minimize evaporation of the sample from the tip of the needle. Observe that the sample occupies 4.9-5.0 microliters in the barrel of the syringe. Duplicate injections of each sample and standard should be made. No more than a 3 percent difference in area is to be expected. An automatic sample injector can be used if it is shown to give reproducibility at least as good as the solvent flush method.
- (E) Measurement of area. The area of the sample peak is measured by an electronic integrator or some other suitable form of area measurement, and preliminary results are read from a standard curve prepared as discussed below.
- (v) Determination of desorption efficiency.
 - (A) Importance of determination. The desorption efficiency of a particular compound can vary from one laboratory to another and also from one batch of charcoal to another. Thus, it is necessary to determine at least once the percentage of the specific compound that is removed in the desorption process, provided the same batch of charcoal is used.
 - (B) Procedure for determining desorption efficiency.
 - (I) Activated charcoal equivalent to the amount in the first section of the sampling tube (100 mg) is measured into a 2.5 in., 4 mm I.D. glass tube, flame sealed at one end. This charcoal must be from the same batch as that used in obtaining the samples and can be obtained from unused charcoal tubes. The open end is capped with Parafilm. A known amount of hexane solution of acrylonitrile containing 0.239 g/ml is injected directly into the activated charcoal with a microliter syringe, and tube is capped with more Parafilm. When using an automatic sample injector, the sample injector vials, capped with Teflon-faced septa, may be used in place of the glass tube.
 - (II) The amount injected is equivalent to that present in a twenty-liter air sample at the selected level.

Part G, Page 41 07/01 Issue

- (III) Six tubes at each of three levels (0.5X, 1X, and 2X of the standard) are prepared in this manner and allowed to stand for at least overnight to assure complete adsorption of the analyte onto the charcoal. These tubes are referred to as the sample. A parallel blank tube should be treated in the same manner except that no sample is added to it. The sample and blank tubes are desorbed and analyzed in exactly the same manner as the sampling tube described in (h)(iv) of this subsection.
- (IV) Two or three standards are prepared by injecting the same volume of compound into 1.0 ml of methanol with the same syringe used in the preparation of the samples. These are analyzed with the samples.
- (V) The desorption efficiency (D.E.) equals the average weight in mg recovered from the tube divided by the weight in mg added to the tube, or

- (VI) The desorption efficiency is dependent on the amount of analyte collected on the charcoal. Plot the desorption efficiency versus weight of analyte found. This curve is used in (j)(iv) of this subsection to correct for adsorption losses.
- (i) Calibration and standards. It is convenient to express concentration of standards in terms of mg/1.0 ml methanol, because samples are desorbed in this amount of methanol. The density of the analyte is used to convert mg into microliters for easy measurement with a microliter syringe. A series of standards, varying in concentration over the range of interest, is prepared and analyzed under the same GC conditions and during the same time period as the unknown samples. Curves are established by plotting concentration in mg/1.0 ml versus peak area.

Note: Since no internal standard is used in the method, standard solutions must be analyzed at the same time that the sample analysis is done. This will minimize the effect of known day-to-day variations and variations during the same day of the FID response.

- (j) Calculations.
 - (i) Read the weight, in mg, corresponding to each peak area from the standard curve. No volume corrections are needed, because the standard curve is based on mg/1.0 ml methanol and the volume of sample injected is identical to the volume of the standards injected.
 - (ii) Corrections for the bank must be made for each sample.

mg = mg sample-mg blank

Where:

mg sample = mg found in front section of sample tube.

mg sample = mg found in front section of blank tube.

Note: A similar procedure is followed for the backup sections.

- (iii) Add the weights found in the front and backup sections to get the total weight in the sample.
- (iv) Read the desorption efficiency from the curve (reference (h)(v)(B) of this subsection) for the amount found in the front section. Divide the total weight by this desorption efficiency to obtain the corrected mg/sample.

(v) The concentration of the analyte in the air sampled can be expressed in mg/cu m.

(vi) Another method of expressing concentration is ppm.

$$ppm = mg/cu m x 24.45/M.W. x 760/P x T + 273/298$$

Where:

P = Pressure (mm Hg) of air sampled.

T = Temperature (°C) of air sampled.

24.45 = Molar volume (liter/mole) at 25°C and 760 mm Hg.

M.W. = Molecular weight (g/mole) of analyte.

760 = Standard pressure (mm Hg).

298 = Standard temperature (°K).

- (k) References.
 - (i) White, L. D. et al., "A Convenient Optimized Method for the Analysis of Selected Solvent Vapors in the Industrial Atmosphere," Amer. Ind. Hyg. Assoc. J., 31:225 (1970).
 - (ii) Documentation of NIOSH Validation Tests, NIOSH Contract No. CDC-99-74-45.
 - (iii) Final Report, NIOSH Contract HSM-99-71-31, "Personal Sampler Pump for Charcoal Tubes," September 15, 1972.
- (7) NIOSH Modification of NIOSH Method S-156. The NIOSH recommended method for low levels for acrylonitrile is a modification of method S-156. It differs in the following respects:
 - (a) Samples are desorbed using 1 ml of 1 percent acetone in CS2 rather than methanol.

(b) The analytical column and conditions are:

(i) Column: 20 percent SP-1000 on 80/100 Supelcoport 10 feet x 1/8 inch S.S.

(ii) Conditions:

Injector temperature: 200°C.

Detector temperature: 100°C.

Column temperature: 85°C.

Helium flow: 25 ml/min.

Air flow: 450 ml/min.

Hydrogen flow: 55 ml/min.

- (c) A 2 µl injection of the desorbed analyte is used.
- (d) A sampling rate of 100 ml/min is recommended.
- (8) OSHA Laboratory Modification of NIOSH Method S-156.
 - (a) Analyte: Acrylonitrile.
 - (b) Matrix: Air.
 - (c) Procedure: Adsorption on charcoal, desorption with methanol, GC.
 - (d) Principle of the method (subsection (1)(a) of this section).
 - (i) A known volume of air is drawn through a charcoal tube to trap the organic vapors present.
 - (ii) The charcoal in the tube is transferred to a small, stoppered sample vial, and the analyte is desorbed with methanol.
 - (iii) An aliquot of the desorbed sample is injected into a gas chromatograph.
 - (iv) The area of the resulting peak is determined and compared with areas obtained for standards.
 - (e) Advantages and disadvantages of the method.
 - (i) The sampling device is small, portable, and involves no liquids. Interferences are minimal, and most of those which do occur can be eliminated by altering chromatographic conditions. The tubes are analyzed by means of a quick, instrumental method.
 - (ii) This method may not be adequate for the simultaneous analysis of two or more substances.

- (iii) The amount of sample which can be taken is limited by the number of milligrams that the tube will hold before overloading. When the sample value obtained for the backup section of the charcoal tube exceeds 25 percent of that found on the front section, the possibility of sample loss exists.
- (iv) The precision of the method is limited by the reproducibility of the pressure drop across the tubes. This drop will affect the flow rate and cause the volume to be imprecise, because the pump is usually calibrated for one tube only.
- (f) Apparatus.
 - (i) A calibrated personal sampling pump whose flow can be determined within ±5 percent at the recommended flow rate.
 - (ii) Charcoal tubes: Glass tube with both ends flame sealed, 7 cm long with a 6 mm O.D. and a 4 mm I.D., containing 2 sections of 20/40 mesh activated charcoal separated by a 2 mm portion of urethane foam. The activated charcoal is prepared from coconut shells and is fired at 600°C prior to packing. The absorbing section contains 100 mg of charcoal, the back-up section 50 mg. A 3 mm portion of urethane foam is placed between the outlet end of the tube and the back-up section. A plug of silicated glass wool is placed in front of the adsorbing section. The pressure drop across the tube must be less than one inch of mercury at a flow rate of 1 liter per minute.
 - (iii) Gas chromatograph equipped with a nitrogen phosphorus detector.
 - (iv) Column (10 ft x 1/8 in stainless steel) packed with 100/120 Supelcoport coated with 10 percent SP 1000.
 - (v) An electronic integrator or some other suitable method for measuring peak area.
 - (vi) Two-milliliter sample vials with Teflon-lined caps.
 - (vii) Microliter syringes: 10 microliter, and other convenient sizes for making standards.
 - (viii) Pipets: 1.0 ml delivery pipets.
 - (ix) Volumetric flasks: Convenient sizes for making standard solutions.
- (g) Reagents.
 - (i) Chromatographic quality methanol.
 - (ii) Acrylonitrile, reagent grade.
 - (iii) Filtered compressed air.
 - (iv) Purified hydrogen.
 - (v) Purified helium.
- (h) Procedure.
 - (i) Cleaning of equipment. All glassware used for the laboratory analysis should be properly cleaned and free of organics which could interfere in the analysis.

- (ii) Calibration of personal pumps. Each pump must be calibrated with a representative charcoal tube in the line.
- (iii) Collection and shipping of samples.
 - (A) Immediately before sampling, break the ends of the tube to provide an opening at least one-half the internal diameter of the tube (2 mm).
 - (B) The smaller section of the charcoal is used as the backup and should be placed nearest the sampling pump.
 - (C) The charcoal should be placed in a vertical position during sampling to minimize channeling through the charcoal.
 - (D) Air being sampled should not be passed through any hose or tubing before entering the charcoal tube.
 - (E) A sample size of 20 liters is recommended. Sample at a flow rate of approximately 0.2 liters per minute. The flow rate should be known with an accuracy of at least ± 5 percent.
 - (F) The temperature and pressure of the atmosphere being sampled should be recorded.
 - (G) The charcoal tubes should be capped with the supplied plastic caps immediately after sampling. Rubber caps should not be used.
 - (H) Submit at least one blank tube (a charcoal tube subjected to the same handling procedures, without having any air drawn through it) with each set of samples.
 - (I) Take necessary shipping and packing precautions to minimize breakage of samples.
- (iv) Analysis of samples.
 - (A) Preparation of samples. In preparation for analysis, each charcoal tube is scored with a file in front of the first section of charcoal and broken open. The glass wool is removed and discarded. The charcoal in the first (larger) section is transferred to a 2 ml vial. The separating section of foam is removed and discarded; the section is transferred to another capped vial. These two sections are analyzed separately.
 - (B) Desorption of samples. Prior to analysis, 1.0 ml of methanol is pipetted into each sample container. Desorption should be done for 30 minutes in an ultrasonic bath. The sample vials are recapped as soon as the solvent is added.
 - (C) GC conditions. The typical operating conditions for the gas chromatograph are:
 - (I) 30 ml/min (60 psig) helium carrier gas flow.
 - (II) 3.0 ml/min (30 psig) hydrogen gas flow to detector.
 - (III) 50 ml/min (60 psig) air flow to detector.

- (IV) 200°C injector temperature.
- (V) 200°C dejector temperature.
- (VI) 100°C column temperature.
- (D) Injection. Solvent flush technique or equivalent.
- (E) Measurement of area. The area of the sample peak is measured by an electronic integator or some other suitable form of area measurement, and preliminary results are read from a standard curve prepared as discussed below.
- (v) Determination of desorption efficiency.
 - (A) Importance of determination. The desorption efficiency of a particular compound can vary from one laboratory to another and also from one batch of charcoal to another. Thus, it is necessary to determine, at least once, the percentage of the specific compound that is removed in the desorption process, provided the same batch of charcoal is used.
 - (B) Procedure for determining desorption efficiency. The reference portion of the charcoal tube is removed. To the remaining portion, amounts representing 0.5X, 1X, and 2X (X represents TLV) based on a 20 l air sample are injected onto several tubes at each level. Dilutions of acrylonitrile with methanol are made to allow injection of measurable quantities. These tubes are then allowed to equilibrate at least overnight. Following equilibration they are analyzed following the same procedure as the samples. A curve of the desorption efficiency (amt recovered/amt added) is plotted versus amount of analyte found. This curve is used to correct for adsorption losses.
- (i) Calibration and standards. A series of standards, varying in concentration over the range of interest, is prepared and analyzed under the same GC conditions and during the same time period as the unknown samples. Curves are prepared by plotting concentration versus peak area.

Note: Since no internal standard is used in the method, standard solutions must be analyzed at the same time that the sample analysis is done. This will minimize the effect of known day-to-day variations and variations during the same day of the NPD response. Multiple injections are necessary.

- (j) Calculations. Read the weight, corresponding to each peak area from the standard curve, correct for the blank, correct for the desorption efficiency, and make necessary air volume corrections.
- (k) Reference. NIOSH Method S-156. [Statutory Authority: Chapter 49.17 RCW. 88-11-021 (Order 88-04), § 296-62-07340, filed 5/11/88.]

WAC 296-62-07342 1,2-Dibromo-3-chloropropane.

- (1) Scope and application.
 - (a) This section applies to occupational exposure to 1,2-dibromo-3-chloropropane (DBCP).
 - (b) This section does not apply to:
 - (i) Exposure to DBCP which results solely from the application and use of DBCP as a pesticide; or

(ii) The storage, transportation, distribution or sale of DBCP in intact containers sealed in such a manner as to prevent exposure to DBCP vapors or liquids, except for the requirements of subsections (11), (16) and (17) of this section.

(2) **Definitions applicable to this section:**

- (a) "Authorized person" any person specifically authorized by the employer and whose duties require the person to be present in areas where DBCP is present; and any person entering this area as a designated representative of employees exercising an opportunity to observe employee exposure monitoring.
- (b) **"DBCP"** 1,2-dibromo-3-chloropropane, Chemical Abstracts Service Registry Number 96-12-8, and includes all forms of DBCP.
- (c) "Director" the director of labor and industries, or his authorized representative.
- (d) **"Emergency"** any occurrence such as, but not limited to equipment failure, rupture of containers, or failure of control equipment which may, or does, result in unexpected release of DBCP.

(3) **Permissible exposure limits.**

- (a) Inhalation.
 - (i) Time-weighted average limit (TWA). The employer shall assure that no employee is exposed to an airborne concentration in excess of 1 part DBCP per billion part of air (ppb) as an eight-hour time-weighted average.
 - (ii) Ceiling limit. The employer shall assure that no employee is exposed to an airborne concentration in excess of 5 parts DBCP per billion parts of air (ppb) as averaged over any 15 minutes during the working day.
- (b) Dermal and eye exposure. The employer shall assure that no employee is exposed to eye or skin contact with DBCP.
- (4) **Notification of use.** Within ten days of the effective date of this section or within ten days following the introduction of DBCP into the workplace, every employer who has a workplace where DBCP is present shall report the following information to the director for each such workplace:
 - (a) The address and location of each workplace in which DBCP is present;
 - (b) A brief description of each process or operation which may result in employee exposure to DBCP;
 - (c) The number of employees engaged in each process or operation who may be exposed to DBCP and an estimate of the frequency and degree of exposure that occurs;
 - (d) A brief description of the employer's safety and health program as it relates to limitation of employee exposure to DBCP.
- (5) **Regulated areas.** The employer shall establish, within each place of employment, regulated areas wherever DBCP concentrations are in excess of the permissible exposure limit.

(a) The employer shall limit access to regulated areas to authorized persons.

(b) All employees entering or working in a regulated area shall wear respiratory protection in accordance with Table I.

(6) **Exposure monitoring.**

- (a) General. Determinations of airborne exposure levels shall be made from air samples that are representative of each employee's exposure to DBCP over an eight-hour period. (For the purposes of this section, employee exposure is that exposure which would occur if the employee were not using a respirator.)
- (b) Initial. Each employer who has a place of employment in which DBCP is present shall monitor each workplace and work operation to accurately determine the airborne concentrations of DBCP to which employees may be exposed.
- (c) Frequency.
 - (i) If the monitoring required by this section reveals employee exposures to be below the permissible exposure limits, the employer shall repeat these determinations at least quarterly.
 - (ii) If the monitoring required by this section reveals employee exposure to be in excess of the permissible exposure limits, the employer shall repeat these determinations for each such employee at least monthly. The employer shall continue these monthly determinations until at least two consecutive measurements, taken at least seven days apart, are below the permissible exposure limit, thereafter the employer shall monitor at least quarterly.
- (d) Additional. Whenever there has been a production process, control or personnel change which may result in any new or additional exposure to DBCP, or whenever the employer has any other reason to suspect a change which may result in new or additional exposure to DBCP, additional monitoring which complies with subsection (6) shall be conducted.
- (e) Employee notification.
 - (i) Within five working days after the receipt of monitoring results, the employer shall notify each employee in writing of results which represent the employee's exposure.
 - (ii) Whenever the results indicate that employee exposure exceeds the permissible exposure limit, the employer shall include in the written notice a statement that the permissible exposure limit was exceeded and a description of the corrective action being taken to reduce exposure to or below the permissible exposure limits.
- (f) Accuracy of measurement. The method of measurement shall be accurate, to a confidence level of 95 percent, to within plus or minus 25 percent for concentrations of DBCP at or above the permissible exposure limits.

(7) **Methods of compliance.**

(a) Priority of compliance methods. The employer shall institute engineering and work-practice controls to reduce and maintain employee exposures to DBCP at or below the permissible

exposure limit, except to the extent that the employer establishes that such controls are not feasible. Where feasible engineering and work-practice controls are not sufficient to reduce employee exposures to within the permissible exposure limit, the employer shall nonetheless use them to reduce exposures to the lowest level achievable by these controls, and shall supplement them by use of respiratory protection.

- (b) Compliance program.
 - (i) The employer shall establish and implement a written program to reduce employee exposure to DBCP to or below the permissible exposure limit solely by means of engineering and work-practice controls as required by this section.
 - (ii) The written program shall include a detailed schedule for development and implementation of the engineering and work-practice controls. These plans shall be revised at least every six months to reflect the current status of the program.
 - (iii) Written plans for these compliance programs shall be submitted upon request to the director, and shall be available at the worksite for examination and copying by the director, and any affected employee or designated representative of employees.
 - (iv) The employer shall institute and maintain at least the controls described in his most recent written compliance program.

(8) **Respiratory protection.**

- (a) General. For employees who are required to use respirators under this section, the employer must provide respirators that comply with the requirements of this subsection. Respirators must be used during:
 - (i) Periods necessary to install or implement feasible engineering and work-practice controls;
 - (ii) Maintenance and repair activities for which engineering and work-practice controls are not feasible;
 - (iii) Work operations for which feasible engineering and work-practice controls are not yet sufficient to reduce employee exposure to or below the permissible exposure limit;
 - (iv) Emergencies.
- (b) The employer must establish, implement, and maintain a respiratory protection program as required by chapter 296-62 WAC, Part E (except WAC 296-62-07130(1) and 296-62-07150 through 296-62-07156).
- (c) Respirator selection. The employer must select the appropriate respirator from Table I of this subsection.

TABLE I
RESPIRATORY PROTECTION FOR DBCP

Concentration Not Greater Than			Respirator Type
(a)	10 ppb:	(i)	Any supplied-air respirator.
		(ii)	Any self-contained breathing apparatus.
(b)	50 ppb:	(i)	Any supplied-air respirator with full facepiece, helmet, or hood.
		(ii)	Any self-contained breathing apparatus with full facepiece.
(c)	250 ppb:	(i)	A Type C supplied-air respirator operated in pressure- demand or other positive-pressure continuous flow mode.
(d)	500 ppb:	(i)	A Type C supplied-air respirator with full facepiece operated in pressure-demand mode with full facepiece.
(e)	Greater than 500 ppb or entry into unknown concentrations:	(i)	A combination respirator which includes a Type C supplied-air respirator with full facepiece operated in pressure-demand mode and an auxiliary self-contained breathing apparatus.
		(ii)	A self-contained breathing apparatus with full facepiece operated in pressure-demand mode.
(f)	Firefighting	(i)	A self-contained breathing apparatus with full facepiece operated in pressure-demand mode.

(9) **Reserved.**

(10) **Emergency situations.**

- (a) Written plans.
 - (i) A written plan for emergency situations shall be developed for each workplace in which DBCP is present.
 - (ii) Appropriate portions of the plan shall be implemented in the event of an emergency.
- (b) Employees engaged in correcting conditions shall be equipped as required in subsection (11) of this section until the emergency is abated.
- (c) Evacuation. Employees not engaged in correcting the emergency shall be removed and restricted from the area and normal operations in the affected area shall not be resumed until the emergency is abated.
- (d) Alerting employees. Where there is a possibility of employee exposure to DBCP due to the occurrence of an emergency, a general alarm shall be installed and maintained to promptly alert employees of such occurrences.
- (e) Medical surveillance. For any employee exposed to DBCP in an emergency situation, the employer shall provide medical surveillance in accordance with subsection (14) of this section.

- (f) Exposure monitoring.
 - (i) Following an emergency, the employer shall conduct monitoring which complies with subsection (6) of this section.
 - (ii) In workplaces not normally subject to periodic monitoring, the employer may terminate monitoring when two consecutive measurements indicate exposures below the permissible exposure limit.

(11) **Protective clothing and equipment.**

- (a) Provision and use. Where eye or skin contact with liquid or solid DBCP may occur, employers shall provide at no cost to the employee, and assure that employees wear impermeable protective clothing and equipment in accordance with WAC 296-800-160 to protect the area of the body which may come in contact with DBCP.
- (b) Cleaning and replacement.
 - (i) The employer shall clean, launder, maintain, or replace protective clothing and equipment required by this subsection to maintain their effectiveness. In addition, the employer shall provide clean protective clothing and equipment at least daily to each affected employee.
 - (ii) Removal and storage.
 - (A) The employer shall assure that employees remove DBCP contaminated work clothing only in change rooms provided in accordance with subsection (13) of this section.
 - (B) The employer shall assure that employees promptly remove any protective clothing and equipment which becomes contaminated with DBCP-containing liquids and solids. This clothing shall not be reworn until the DBCP has been removed from the clothing or equipment.
 - (C) The employer shall assure that no employee takes DBCP contaminated protective devices and work clothing out of the change room, except those employees authorized to do so for the purpose of laundering, maintenance, or disposal.
 - (iii) The employer shall assure that DBCP-contaminated protective work clothing and equipment is placed and stored in closed containers which prevent dispersion of DBCP outside the container.
 - (iv) The employer shall inform any person who launders or cleans DBCP-contaminated protective clothing or equipment of the potentially harmful effects of exposure to DBCP.
 - (v) The employer shall assure that the containers of contaminated protective clothing and equipment which are to be removed from the workplace for any reason are labeled in accordance with subsection (16)(c) of this section.
 - (vi) The employer shall prohibit the removal of DBCP from protective clothing and equipment by blowing or shaking.

(12) **Housekeeping.**

- (a) Surfaces.
 - (i) All surfaces shall be maintained free of accumulations of DBCP.
 - (ii) Dry sweeping and the use of air for the cleaning of floors and other surfaces where DBCP dust or liquids are found is prohibited.
 - (iii) Where vacuuming methods are selected, either portable units or a permanent system may be used.
 - (A) If a portable unit is selected, the exhaust shall be attached to the general workplace exhaust ventilation system or collected within the vacuum unit, equipped with high efficiency filters or other appropriate means of contaminant removal, so that DBCP is not reintroduced into the workplace air; and
 - (B) Portable vacuum units used to collect DBCP may not be used for other cleaning purposes and shall be labeled as prescribed by subsection (16)(c) of this section.
 - (iv) Cleaning of floors and other contaminated surfaces may not be performed by washing down with a hose, unless a fine spray has first been laid down.
- (b) Liquids. Where DBCP is present in a liquid form, or as a resultant vapor, all containers or vessels containing DBCP shall be enclosed to the maximum extent feasible and tightly covered when not in use.
- (c) Waste disposal. DBCP waste, scrap, debris, bags, containers or equipment, shall be disposed in sealed bags or other closed containers which prevent dispersion of DBCP outside the container.

(13) **Hygiene facilities and practices.**

- (a) Change rooms. The employer shall provide clean change rooms equipped with storage facilities for street clothes and separate storage facilities for protective clothing and equipment whenever employees are required to wear protective clothing and equipment in accordance with subsections (8), (9) and (11) of this section.
- (b) Showers.
 - (i) The employer shall assure that employees working in the regulated area shower at the end of the work shift.
 - (ii) The employer shall assure that employees whose skin becomes contaminated with DBCP-containing liquids or solids immediately wash or shower to remove any DBCP from the skin.
 - (iii) The employer shall provide shower facilities in accordance with WAC 296-24-12009 (3)(c).
- (c) Lunchrooms. The employer shall provide lunchroom facilities which have a temperature controlled, positive pressure, filtered air supply, and which are readily accessible to employees working in regulated areas.

- (d) Lavatories.
 - (i) The employer shall assure that employees working in the regulated area remove protective clothing and wash their hands and face prior to eating.
 - (ii) The employer shall provide a sufficient number of lavatory facilities which comply with WAC 296-800-230.
- (e) Prohibition of activities in regulated areas. The employer shall assure that, in regulated areas, food or beverages are not present or consumed, smoking products and implements are not present or used, and cosmetics are not present or applied.

(14) **Medical surveillance.**

- (a) General. The employer shall institute a program of medical surveillance for each employee who is or will be exposed, without regard to the use of respirators, to DBCP. The employer shall provide each such employee with an opportunity for medical examinations and tests in accordance with this subsection. All medical examinations and procedures shall be performed by or under the supervision of a licensed physician, and shall be provided without cost to the employee.
- (b) Frequency and content. At the time of initial assignment, annually thereafter, and whenever exposure to DBCP occurs, the employer shall provide a medical examination for employees who work in regulated areas, which includes at least the following:
 - (i) A complete medical and occupational history with emphasis on reproductive history.
 - (ii) A complete physical examination with emphasis on the genito-urinary tract, testicle size, and body habitus including the following tests:
 - (A) Sperm count;
 - (B) Complete urinalysis (U/A);
 - (C) Complete blood count; and
 - (D) Thyroid profile.
 - (iii) A serum specimen shall be obtained and the following determinations made by radioimmunoassay techniques utilizing National Institutes of Health (NIH) specific antigen or one of equivalent sensitivity:
 - (A) Serum multiphasic analysis (SMA 12);
 - (B) Serum follicle stimulating hormone (FSH);
 - (C) Serum luteinizing hormone (LH); and
 - (D) Serum estrogen (females).

- (iv) Any other tests deemed appropriate by the examining physician.
- (c) Additional examinations. If the employee for any reason develops signs or symptoms commonly associated with exposure to DBCP, the employer shall provide the employee with a medical examination which shall include those elements considered appropriate by the examining physician.
- (d) Information provided to the physician. The employer shall provide the following information to the examining physician:
 - (i) A copy of this standard and its appendices;
 - (ii) A description of the affected employee's duties as they relate to the employee's exposure;
 - (iii) The level of DBCP to which the employee is exposed; and
 - (iv) A description of any personal protective equipment used or to be used.
- (e) Physician's written opinion.
 - (i) For each examination under this section, the employer shall obtain and provide the employee with a written opinion from the examining physician which shall include:
 - (A) The results of the medical tests performed;
 - (B) The physician's opinion as to whether the employee has any detected medical condition which would place the employee at an increased risk of material impairment of health from exposure to DBCP;
 - (C) Any recommended limitations upon the employee's exposure to DBCP or upon the use of protective clothing and equipment such as respirators; and
 - (D) A statement that the employee was informed by the physician of the results of the medical examination, and any medical conditions which require further examination or treatment.
 - (ii) The employer shall instruct the physician not to reveal in the written opinion specific findings or diagnoses unrelated to occupational exposure to DBCP.
 - (iii) The employer shall provide a copy of the written opinion to the affected employee.
- (f) Emergency situations. If the employee is exposed to DBCP in an emergency situation, the employer shall provide the employee with a sperm count test as soon as practicable, or, if the employee is unable to produce a semen specimen, the hormone tests contained in subsection (14)(b) of this section. The employer shall provide these same tests three months later.

(15) Employee information and training.

- (a) Training program.
 - (i) Within thirty days of the effective date of this standard, the employer shall institute a training program for all employees who may be exposed to DBCP and shall assure their participation in such training program.

- (ii) The employer shall assure that each employee is informed of the following:
 - (A) The information contained in Appendices A, B and C;
 - (B) The quantity, location, manner of use, release or storage of DBCP and the specific nature of operations which could result in exposure to DBCP as well as any necessary protective steps;
 - (C) The purpose, proper use, limitations, and other training requirements covering respiratory protection as required in chapter 296-62 WAC, Part E;
 - (D) The purpose and description of the medical surveillance program required by subsection (14) of this section; and
 - (E) A review of this standard.
- (b) Access to training materials.
 - (i) The employer shall make a copy of this standard and its appendices readily available to all affected employees.
 - (ii) The employer shall provide, upon request, all materials relating to the employee information and training program to the director.

(16) Signs and labels.

- (a) General.
 - (i) The employer may use labels or signs required by other statutes, regulations, or ordinances in addition to or in combination with, signs and labels required by this subsection.
 - (ii) The employer shall assure that no statement appears on or near any sign or label required by this subsection which contradicts or detracts from the required sign or label.
- (b) Signs.
 - (i) The employer shall post signs to clearly indicate all work areas where DBCP may be present. These signs shall bear the legend:

DANGER 1,2-Dibromo-3-chloropropane

(Insert appropriate trade or common names)

CANCER HAZARD AUTHORIZED PERSONNEL ONLY

(ii) Where airborne concentrations of DBCP exceed the permissible exposure limits, the signs shall bear the additional legend:

RESPIRATOR REQUIRED

- (c) Labels.
 - (i) The employer shall assure that precautionary labels are affixed to all containers of DBCP and of products containing DBCP, and that the labels remain affixed when the DBCP or products containing DBCP are sold, distributed, or otherwise leave the employer's workplace. Where DBCP or products containing DBCP are sold, distributed or otherwise leave the employer's workplace bearing appropriate labels required by EPA under the regulations in 40 CFR Part 162, the labels required by this subsection need not be affixed.
 - (ii) The employer shall assure that the precautionary labels required by this subsection are readily visible and legible. The labels shall bear the following legend:

DANGER 1,2-Dibromo-3-chloropropane **CANCER HAZARD**

(17) **Recordkeeping.**

- (a) Exposure monitoring.
 - (i) The employer shall establish and maintain an accurate record of all monitoring required by subsection (6) of this section.
 - (ii) This record shall include:
 - (A) The dates, number, duration and results of each of the samples taken, including a description of the sampling procedure used to determine representative employee exposure;
 - (B) A description of the sampling and analytical methods used;
 - (C) Type of respiratory worn, if any; and
 - (D) Name, Social Security number, and job classification of the employee monitored and of all other employees whose exposure the measurement is intended to represent.
 - (iii) The employer shall maintain this record for at least forty years or the duration of employment plus twenty years, whichever is longer.
- (b) Medical surveillance.
 - (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance required by subsection (14) of this section.
 - (ii) This record shall include:
 - (A) The name and Social Security number of the employee;
 - (B) A copy of the physician's written opinion;
 - (C) Any employee medical complaints related to exposure to DBCP;

- (D) A copy of the information provided the physician as required by subsection (14)(c) of this section; and
- (E) A copy of the employee's medical and work history.
- (iii) The employer shall maintain this record for at least forty years or the duration of employment plus twenty years, whichever is longer.

(c) Availability.

- (i) The employer shall assure that all records required to be maintained by this section be made available upon request to the director for examination and copying.
- (ii) Employee exposure monitoring records and employee medical records required by this subsection shall be provided upon request to employees' designated representatives and the assistant director in accordance with WAC 296-62-05201 through 296-62-05209; and 296-62-05213 through 296-62-05217.
- (d) Transfer of records.
 - (i) If the employer ceases to do business, the successor employer shall receive and retain all records required to be maintained by this section for the prescribed period.
 - (ii) If the employer ceases to do business and there is no successor employer to receive and retain the records for the prescribed period, the employer shall transmit these records by mail to the director.
 - (iii) At the expiration of the retention period for the records required to be maintained under this section, the employer shall transmit these records by mail to the director.
 - (iv) The employer shall also comply with any additional requirements involving transfer of records set forth in WAC 296-62-05215.

(18) **Observation of monitoring.**

- (a) Employee observation. The employer shall provide affected employees, or their designated representatives, an opportunity to observe any monitoring of employee exposure to DBCP conducted under subsection (6) of this section.
- (b) Observation procedures.
 - (i) Whenever observation of the measuring or monitoring of employee exposure to DBCP requires entry into an area where the use of protective clothing or equipment is required, the employer shall provide the observer with personal protective clothing or equipment required to be worn by employees working in the area, assure the use of such clothing and equipment, and require the observer to comply with all other applicable safety and health procedures.
 - (ii) Without interfering with the monitoring or measurement, observers shall be entitled to:

- (A) Receive an explanation of the measurement procedures;
- (B) Observe all steps related to the measurement of airborne concentrations of DBCP performed at the place of exposure; and
- (C) Record the results obtained.
- (19) **Appendices.** The information contained in the appendices is not intended, by itself, to create any additional obligations not otherwise imposed or to detract from any existing obligation.

 [Statutory Authority: RCW 49.17.010, .040, .050. 01-11-038 (Order 99-36), § 296-62-07342, filed 05/09/01, effective 09/01/01. Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10), § 296-62-07342, filed 05/04/99, effective 09/01/99. Statutory Authority: Chapter 49.17 RCW. 96-09-030 (Order 96-01), § 296-62-07342, filed 4/10/96, effective 6/1/96; 88-11-021 (Order 88-04), § 296-62-07342, filed 5/11/88.]

WAC 296-62-07343 Appendix A--Substance safety data sheet for DBCP.

- (1) **Substance identification.**
 - (a) Synonyms and trades names: DBCP; Dibromochloropropane; Fumazone (Dow Chemical Company TM); Nemafume; Nemagon (Shell Chemical Co. TM); Nemaset; BBC 12; and OS 1879.
 - (b) Permissible exposure:
 - (i) Airborne. 1 part DBCP vapor per billion parts of air (1 ppb); time-weighted average (TWA) for an eight-hour workday.
 - (ii) Dermal. Eye contact and skin contact with DBCP are prohibited.
 - (c) Appearance and odor: Technical grade DBCP is a dense yellow or amber liquid with a pungent odor. It may also appear in granular form, or blended in varying concentrations with other liquids.
 - (d) Uses: DBCP is used to control nematodes, very small worm-like plant parasites, on crops including cotton, soybeans, fruits, nuts, vegetables and ornamentals.

(2) Health hazard data.

- (a) Routes of entry: Employees may be exposed:
 - (i) Through inhalation (breathing);
 - (ii) Through ingestion (swallowing);
 - (iii) Skin contact; and
 - (iv) Eye contact.
- (b) Effects of exposure:
 - (i) Acute exposure. DBCP may cause drowsiness, irritation of the eyes, nose, throat and skin, nausea and vomiting. In addition, overexposure may cause damage to the lungs, liver or kidneys.

- (ii) Chronic exposure. Prolonged or repeated exposure to DBCP has been shown to cause sterility in humans. It also has been shown to produce cancer and sterility in laboratory animals and has been determined to constitute an increased risk of cancer in people.
- (iii) Reporting signs and symptoms. If you develop any of the above signs or symptoms that you think are caused by exposure to DBCP, you should inform your employer.

(3) Emergency first-aid procedures.

- (a) Eye exposure. If DBCP liquid or dust containing DBCP gets into your eyes, wash your eyes immediately with large amounts of water, lifting the lower and upper lids occasionally. Get medical attention immediately. Contact lenses should not be worn when working with DBCP.
- (b) Skin exposure. If DBCP liquids or dusts containing DBCP get on your skin, immediately wash using soap or mild detergent and water. If DBCP liquids or dusts containing DBCP penetrate through your clothing, remove the clothing immediately and wash. If irritation is present after washing get medical attention.
- (c) Breathing. If you or any person breathe in large amounts of DBCP, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Do not use mouth-to-mouth. Keep the affected person warm and at rest. Get medical attention as soon as possible.
- (d) Swallowing. When DBCP has been swallowed and the person is conscious, give the person large amounts of water immediately. After the water has been swallowed, try to get the person to vomit by having him touch the back of his throat with his finger. Do not make an unconscious person vomit. Get medical attention immediately.
- (e) Rescue. Notify someone. Put into effect the established emergency rescue procedures. Know the locations of the emergency rescue equipment before the need arises.

(4) Respirators and protective clothing.

- (a) Respirators. You may be required to wear a respirator in emergencies and while your employer is in the process of reducing DBCP exposures through engineering controls. If respirators are worn, they must have a label issued by the National Institute for Occupational Safety and Health (NIOSH) under the provisions of 42 CFR part 84 stating that the respirators have been certified for use with organic vapors. For effective protection, a respirator must fit your face and head snugly. The respirator should not be loosened or removed in work situations where its use is required. Respirators must not be loosened or removed in work situations where their use is required.
- (b) Protective clothing. When working with DBCP you must wear for your protection impermeable work clothing provided by your employer. (Standard rubber and neoprene protective clothing do not offer adequate protection). DBCP must never be allowed to remain on the skin. Clothing and shoes must not be allowed to become contaminated with DBCP, and if they do, they must be promptly removed and not worn again until completely free of DBCP. Turn in impermeable clothing that has developed leaks for repair or replacement.
- (c) Eye protection. You must wear splashproof safety goggles where there is any possibility of DBCP liquid or dust contacting your eyes.

(5) Precautions for safe use, handling, and storage.

- (a) DBCP must be stored in tightly closed containers in a cool, well-ventilated area.
- (b) If your work clothing may have become contaminated with DBCP, or liquids or dusts containing DBCP, you must change into uncontaminated clothing before leaving the work premises.
- You must promptly remove any protective clothing that becomes contaminated with DBCP. This clothing must not be reworn until the DBCP is removed from the clothing.
- (d) If your skin becomes contaminated with DBCP, you must immediately and thoroughly wash or shower with soap or mild detergent and water to remove any DBCP from your skin.
- (e) You must not keep food, beverages, cosmetics, or smoking materials, nor eat or smoke, in regulated areas.
- (f) If you work in a regulated area, you must wash your hands thoroughly with soap or mild detergent and water, before eating, smoking or using toilet facilities.
- (g) If you work in a regulated area, you must remove any protective equipment or clothing before leaving the regulated area.
- (h) Ask your supervisor where DBCP is used in your work area and for any additional safety and health rules.

(6) Access to information.

- (a) Each year, your employer is required to inform you of the information contained in this substance safety data sheet for DBCP. In addition, your employer must instruct you in the safe use of DBCP, emergency procedures, and the correct use of protective equipment.
- (b) Your employer is required to determine whether you are being exposed to DBCP. You or your representative have the right to observe employee exposure measurements and to record the result obtained. Your employer is required to inform you of your exposure. If your employer determines that you are being overexposed, they are required to inform you of the actions which are being taken to reduce your exposure.
- (c) Your employer is required to keep records of your exposure and medical examinations. Your employer is required to keep exposure and medical data for at least forty years or the duration of your employment plus twenty years, whichever is longer.
- (d) Your employer is required to release exposure and medical records to you, your physician, or other individual designated by you upon your written request.

[Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10) § 296-62-07343, filed 05/04/99, effective 09/01/99.] Statutory Authority: Chapter 49.17 RCW. 94-15-096 (Order 94-07), § 296-62-07343, filed 7/20/94, effective 9/20/94; 88-11-021 (Order 88-04), § 296-62-07343, filed 5/11/88.]

WAC 296-62-07344 Appendix B--Substance technical guidelines for DBCP.

(1) Physical and chemical data.

(a) Substance identification.

- (i) Synonyms: 1,2-dibromo-3-chloropropane; DBCP, Fumazone; Nemafume; Nemagon; Nemaset; BBC 12; OS 1879. DBCP is also included in agricultural pesticides and fumigants which include the phrase "Nema_____, in their name.
- (ii) Formula: $C_3H_5Br_2 C_1$.
- (iii) Molecular weight: 236.
- (b) Physical data:
 - (i) Boiling point (760 mm HG): 195C (383F)
 - (ii) Specific gravity (water = 1): 2.093.
 - (iii) Vapor density (air = 1 at boiling point of DBCP): Data not available.
 - (iv) Melting point: 6C (43F).
 - (v) Vapor pressure at 20C (68F): 0.8 mm HG
 - (vi) Solubility in water: 1000 ppm.
 - (vii) Evaporation rate (Butyl Acetate = 1): Very much less than 1.
- (c) Appearance and odor: Dense yellow or amber liquid with a pungent odor at high concentrations. Any detectable odor of DBCP indicates overexposure.
- (2) Fire explosion and reactivity hazard data.
 - (a) Fire.
 - (i) Flash point: 170F (77C)
 - (ii) Autoignition temperature: Data not available.
 - (iii) Flammable limits in air, percent by volume: Data not available.
 - (iv) Extinguishing media: Carbon dioxide, dry chemical.
 - (v) Special fire-fighting procedures: Do not use a solid stream of water since a stream will scatter and spread the fire. Use water spray to cool containers exposed to a fire.
 - (vi) Unusual fire and explosion hazards: None known.
 - (vii) For purposes of complying with the requirements of WAC 296-24-330, liquid DBCP is classified as a Class III A combustible liquid.
 - (viii) For the purpose of complying with chapter 296-24 WAC Part L, the classification of hazardous locations as described in article 500 of the National Electrical Code for DBCP shall be Class I, Group D.

- (ix) For the purpose of compliance with WAC 296-24-592, DBCP is classified as a Class B fire hazard.
- (x) For the purpose of compliance with WAC 296-24-230, locations classified as hazardous locations due to the presence of DBCP shall be Class I, Group D.
- (xi) Sources of ignition are prohibited where DBCP presents a fire or explosion hazard.
- (b) Reactivity.
 - (i) Conditions contributing to instability: None known.
 - (ii) Incompatibilities: Reacts with chemically active metals, such as aluminum, magnesium and tin alloys.
 - (iii) Hazardous decomposition products: Toxic gases and vapors (such as HBr, HC1 and carbon monoxide) may be released in a fire involving DBCP.
 - (iv) Special precautions: DBCP will attack some rubber materials and coatings.

(3) Spill, leak and disposal procedures.

- (a) If DBCP is spilled or leaked, the following steps should be taken:
 - (i) The area should be evacuated at once and re-entered only after thorough ventilation.
 - (ii) Ventilate area of spill or leak.
 - (iii) If in liquid form, collect for reclamation or absorb in paper, vermiculite, dry sand, earth or similar material.
 - (iv) If in solid form, collect spilled material in the most convenient and safe manner for reclamation or for disposal.
- (b) Persons not wearing protective equipment must be restricted from areas of spills or leaks until cleanup has been completed.
- (c) Waste disposal methods:
 - (i) For small quantities of liquid DBCP, absorb on paper towels, remove to a safe place (such as a fume hood) and burn the paper. Large quantities can be reclaimed or collected and atomized in a suitable combustion chamber equipped with an appropriate effluent gas cleaning device. If liquid DBCP is absorbed in vermiculite, dry sand, earth or similar material and placed in sealed containers it may be disposed of in a stateapproved sanitary landfill.
 - (ii) If in solid form, for small quantities, place on paper towels, remove to a safe place (such as a fume hood) and burn. Large quantities may be reclaimed. However, if this is not practical, dissolve in a flammable solvent (such as alcohol) and atomize in a suitable combustion chamber equipped with an appropriate effluent gas cleaning device. DBCP in solid form may also be disposed in a state-approved sanitary landfill.

- (4) Monitoring and measurement procedures.
 - (a) Exposure above the permissible exposure limit.
 - (i) Eight hour exposure evaluation: Measurements taken for the purpose of determining employee exposure under this section are best taken so that the average eight-hour exposure may be determined from a single eight-hour sample or two four-hour samples. Air samples should be taken in the employee's breathing zone (air that would most nearly represent that inhaled by the employee).
 - (ii) Monitoring techniques: The sampling and analysis under this section may be performed by collecting the DBCP vapor on petroleum based charcoal absorption tubes with subsequent chemical analyses. The method of measurement chosen should determine the concentration of airborne DBCP at the permissible exposure limit to an accuracy of plus or minus twenty-five percent. If charcoal tubes are used, a total volume of ten liters should be collected at a flow rate of 50 cc per minute for each tube. Analyze the resultant samples as you would samples of halogenated solvent.
 - (b) Since many of the duties relating to employee protection are dependent on the results of monitoring and measuring procedures, employers should assure that the evaluation of employee exposures is performed by a competent industrial hygienist or other technically qualified person.
- (5) **Protective clothing.** Employees should be required to wear appropriate protective clothing to prevent any possibility of skin contact with DBCP. Because DBCP is absorbed through the skin, it is important to prevent skin contact with both liquid and solid forms of DBCP. Protective clothing should include impermeable coveralls or similar fullbody work clothing, gloves, headcoverings, and workshoes or shoe coverings. Standard rubber and neoprene gloves do not offer adequate protection and should not be relied upon to keep DBCP off the skin. DBCP should never be allowed to remain on the skin. Clothing and shoes should not be allowed to become contaminated with the material; and if they do, they should be promptly removed and not worn again until completely free of the material. Any protective clothing which has developed leaks or is otherwise found to be defective should be repaired or replaced. Employees should also be required to wear splashproof safety goggles where there is any possibility of DBCP contacting the eyes.

(6) Housekeeping and hygiene facilities.

- (a) The workplace must be kept clean, orderly and in a sanitary condition.
- (b) Dry sweeping and the use of compressed air is unsafe for the cleaning of floors and other surfaces where DBCP dust or liquids are found. To minimize the contamination of air with dust, vacuuming with either portable or permanent systems must be used. If a portable unit is selected, the exhaust must be attached to the general workplace exhaust ventilation system, or collected within the vacuum unit equipped with high efficiency filters or other appropriate means of contamination removal and not used for other purposes. Units used to collect DBCP must be labeled.
- (c) Adequate washing facilities with hot and cold water must be provided, and maintained in a sanitary condition. Suitable cleansing agents should also be provided to assure the effective removal of DBCP from the skin.
- (d) Change or dressing rooms with individual clothes storage facilities must be provided to prevent the contamination of street clothes with DBCP. Because of the hazardous nature of DBCP, contaminated protective clothing must be stored in closed containers for cleaning or disposal.

- (7) Miscellaneous precautions.
 - (a) Store DBCP in tightly closed containers in a cool, well ventilated area.
 - (b) Use of supplied-air suits or other impervious clothing (such as acid suits) may be necessary to prevent skin contact with DBCP. Supplied-air suits should be selected, used, and maintained under the supervision of persons knowledgeable in the limitations and potential life-endangering characteristics of supplied-air suits.
 - (c) The use of air-conditioned suits may be necessary in warmer climates.
 - (d) Advise employees of all areas and operations where exposure to DBCP could occur.
- (8) Common operations. Common operations in which exposure to DBCP is likely to occur are: During its production; and during its formulation into pesticides and fumigants.

 [Statutory Authority: Chapter 49.17 RCW. 91-24-017 (Order 91-07), § 296-62-07344, filed 11/22/91, effective 12/24/91; 88-11-021 (Order 88-04), § 296-62-07344, filed 5/11/88.]

WAC 296-62-07346 Appendix C--Medical surveillance guidelines for DBCP.

- (1) **Route of entry.**
 - (a) Inhalation:
 - (b) Skin absorption.
- (2) Toxicology. Recent data collected on workers involved in the manufacture and formulation of DBCP has shown that DBCP can cause sterility at very low levels of exposure. This finding is supported by studies showing that DBCP causes sterility in animals. Chronic exposure to DBCP resulted in pronounced necrotic action on the parenchymatous organs (i.e., liver, kidney, spleen) and on the testicles of rats at concentrations as low as 5 ppm. Rats that were chronically exposed to DBCP also showed changes in the composition of the blood, showing low RBC, hemoglobin, and WBC, and high reticulocyte levels as well as functional hepatic disturbance, manifesting itself in a long prothrombin time. Reznik et al., noted a single dose of 100 mg produced profound depression of the nervous system of rats. Their condition gradually improved. Acute exposure also resulted in the destruction of the sex gland activity of male rats as well as causing changes in the estrous cycle in female rats. Animal studies have also associated DBCP with an increased incidence of carcinoma. Olson, et al., orally administered DBCP to rats and mice five times per week at experimentally predetermined maximally tolerated doses and at half those doses. As early as ten weeks after initiation of treatment, DBCP induced a high incidence of squamous cell carcinomas of the stomach with metastases in both species. DBCP also induced mammary adenocarcinomas in the female rats at both dose levels.
- (3) Signs and symptoms.
 - (a) Inhalation: Nausea, eye irritation, conjunctivitis, respiratory irritation, pulmonary congestion or edema, CNS depression with apathy, sluggishness, and ataxia.
 - (b) Dermal: Erythema or inflammation and dermatitis on repeated exposure.

(4) **Special tests.**

- (a) Semen analysis: The following information excerpted from the document "Evaluation of Testicular Function," submitted by the Corporate Medical Department of the Shell Oil Company (exhibit 39-3), may be useful to physicians conducting the medical surveillance program. In performing semen analyses certain minimal but specific criteria should be met:
 - (i) It is recommended that a minimum of three valid semen analyses be obtained in order to make a determination of an individual's average sperm count.
 - (ii) A period of sexual abstinence is necessary prior to the collection of each masturbatory sample. It is recommended that intercourse or masturbation be performed 48 hours before the actual specimen collection. A period of 48 hours of abstinence would follow; then the masturbatory sample would be collected.
 - (iii) Each semen specimen should be collected in a clean, widemouthed, glass jar (not necessarily pre-sterilized) in a manner designated by the examining physician. Any part of the seminal fluid exam should be initialed only after liquifaction is complete, i.e., 30 to 45 minutes after collection.
 - (iv) Semen volume should be measured to the nearest 1/10 of a cubic centimeter.
 - (v) Sperm density should be determined using routine techniques involving the use of a white cell pipette and a hemocytometer chamber. The immobilizing fluid most effective and most easily obtained for this process is distilled water.
 - (vi) Thin, dry smears of the semen should be made for a morphologic classification of the sperm forms and should be stained with either hematoxalin or the more difficult, yet more precise, Papanicolaou technique. Also of importance to record is obvious sperm agglutination, pyospermia, delayed liquifaction (greater than 30 minutes), and hyperviscosity. In addition, pH, using nitrazine paper, should be determined.
 - (vii) A total morphology evaluation should include percentages of the following:
 - (A) Normal (oval) forms,
 - (B) Tapered forms,
 - (C) Amorphous forms (include large and small sperm shapes),
 - (D) Duplicated (either heads or tails) forms, and
 - (E) Immature forms.
 - (viii) Each sample should be evaluated for sperm viability (percent viable sperm moving at the time of examination) as well as sperm motility (subjective characterization of "purposeful forward sperm progression" of the majority of those viable sperm analyzed) within two hours after collection, ideally by the same or equally qualified examiner.
- (b) Serum determinations: The following serum determinations should be performed by radiommuno-assay techniques using National Institutes of Health (NIH) specific antigen or antigen preparations of equivalent sensitivity:

- (i) Serum follicle stimulating hormone (FSH),
- (ii) Serum luteinizing hormone (LH), and
- (iii) Serum total estrogen (females only).
- (5) **Treatment.** Remove from exposure immediately, give oxygen or artificial resuscitation if indicated. Contaminated clothing and shoes should be removed immediately. Flush eyes and wash contaminated skin. If swallowed and the person is conscious, induce vomiting. Recovery from mild exposures is usually rapid and complete.

(6) Surveillance and preventive considerations.

- Other considerations. DBCP can cause both acute and chronic effects. It is important that the
 physician become familiar with the operating conditions in which exposure to DBCP occurs.
 Those with respiratory disorders may not tolerate the wearing of negative pressure respirators.
- (b) Surveillance and screening. Medical histories and laboratory examinations are required for each employee subject to exposure to DBCP. The employer should screen employees for history of certain medical conditions (listed below) which might place the employee at increased risk from exposure:
 - (i) Liver disease. The primary site of biotransformation and detoxification of DBCP is the liver. Liver dysfunctions likely to inhibit the conjugation reactions will tend to promote the toxic actions of DBCP. These precautions should be considered before exposing persons with impaired liver function to DBCP.
 - (ii) Renal disease. Because DBCP has been associated with injury to the kidney it is important that special consideration be given to those with possible impairment of renal function.
 - (iii) Skin disease. DBCP can penetrate the skin and can cause erythema on prolonged exposure. Persons with pre-existing skin disorders may be more susceptible to the effects of DBCP.
 - Blood dyscrasias. DBCP has been shown to decrease the content of erythrocytes,
 hemoglobin, and leukocytes in the blood, as well as increase the prothrombin time.
 Persons with existing blood disorders may be more susceptible to the effects of DBCP.
 - (v) Reproductive disorders. Animal studies have associated DBCP with various effects on the reproductive organs. Among these effects are atrophy of the testicles and changes in the estrous cycle. Persons with pre-existing reproductive disorders may be at increased risk to these effects of DBCP.

(7) **References.**

- (a) Reznik, Ya. B. and Sprinchan, G. K.: Experimental Data on the Gonadotoxic effect of Nemagon, Gig. Sanit., (6), 1975, pp. 101-102, (translated from Russian).
- (b) Faydysh, E. V., Rakhmatullaev, N. N. and Varshavskii, V. A.: The Cytotoxic Action of Nemagon in a Subacute Experiment, Med. Zh. Uzbekistana, (No. 1), 1970, pp. 64-65, (translated from Russian).

(c) Rakhmatullaev, N. N.: Hygienic Characteristics of the Nematocide Nemagon in Relation to Water Pollution Control, Hyg. Sanit., 36(3), 1971, pp. 344-348, (translated from Russian).

- (d) Olson, W. A. et al.: Induction of Stomach Cancer in Rats and Mice by Halogenated Aliphatic Fumigants, Journal of the National Cancer Institute, (51), 1973, pp. 1993-1995.
- (e) Torkelson, T. R. et al.: Toxicologic Investigations of 1,2-Dibromo-3-chloropropane, Toxicology and Applied Pharmacology, 3, 1961 pp. 545-559.

 [Statutory Authority: Chapter 49.17 RCW. 88-11-021 (Order 88-04), § 296-62-07346, filed 5/11/88.]

WAC 296-62-07347 Inorganic arsenic.

(1) **Scope and application.** This section applies to all occupational exposures to inorganic arsenic except that this section does not apply to employee exposures in agriculture or resulting from pesticide application, the treatment of wood with preservatives or the utilization of arsenically preserved wood.

(2) **Definitions.**

- (a) "Action level" a concentration of inorganic arsenic of 5 micrograms per cubic meter of air (5 μg/m³) averaged over any eight-hour period.
- (b) "Authorized person" any person specifically authorized by the employer whose duties require the person to enter a regulated area, or any person entering such an area as a designated representative of employees for the purpose of exercising the right to observe monitoring and measuring procedures under subsection (5) of this section.
- (c) "Director" the director of the department of labor and industries, or his/her designated representative.
- (d) **"Inorganic arsenic"** copper aceto-arsenite and all inorganic compounds containing arsenic except arsine, measured as arsenic (As).
- (3) **Permissible exposure limit.** The employer shall assure that no employee is exposed to inorganic arsenic at concentrations greater than 10 micrograms per cubic meter of air $(10 \, \mu g/m^3)$, averaged over any eighthour period.

(4) **Notification of use.**

- (a) Within sixty days after the introduction of inorganic arsenic into the workplace, every employer who is required to establish a regulated area in his/her workplaces shall report in writing to the department of labor and industries for each such workplace:
 - (i) The address of each such workplace;
 - (ii) The approximate number of employees who will be working in regulated areas; and
 - (iii) A brief summary of the operations creating the exposure and the actions which the employer intends to take to reduce exposures.
- (b) Whenever there has been a significant change in the information required by subsection (4)(a) of this section, the employer shall report the changes in writing within sixty days to the department of labor and industries.

(5) Exposure monitoring.

- (a) General.
 - (i) Determinations of airborne exposure levels shall be made from air samples that are representative of each employee's exposure to inorganic arsenic over an eight-hour period.
 - (ii) For the purposes of this section, employee exposure is that exposure which would occur if the employee were not using a respirator.
 - (iii) The employer shall collect full shift (for at least seven continuous hours) personal samples including at least one sample for each shift for each job classification in each work area.
- (b) Initial monitoring. Each employer who has a workplace or work operation covered by this standard shall monitor each such workplace and work operation to accurately determine the airborne concentration of inorganic arsenic to which employees may be exposed.
- (c) Frequency.
 - (i) If the initial monitoring reveals employee exposure to be below the action level the measurements need not be repeated except as otherwise provided in subsection (5)(d) of this section.
 - (ii) If the initial monitoring, required by this section, or subsequent monitoring reveals employee exposure to be above the permissible exposure limit, the employer shall repeat monitoring at least quarterly.
 - (iii) If the initial monitoring, required by this section, or subsequent monitoring reveals employee exposure to be above the action level and below the permissible exposure limit the employee shall repeat monitoring at least every six months.
 - (iv) The employer shall continue monitoring at the required frequency until at least two consecutive measurements, taken at least seven days apart, are below the action level at which time the employer may discontinue monitoring for that employee until such time as any of the events in subsection (5)(d) of this section occur.
- (d) Additional monitoring. Whenever there has been a production, process, control or personal change which may result in new or additional exposure to inorganic arsenic, or whenever the employer has any other reason to suspect a change which may result in new or additional exposures to inorganic arsenic, additional monitoring which complies with subsection (5) of this section shall be conducted.
- (e) Employee notification.
 - (i) Within five working days after the receipt of monitoring results, the employer shall notify each employee in writing of the results which represent that employee's exposures.
 - (ii) Whenever the results indicate that the representative employee exposure exceeds the permissible exposure limit, the employer shall include in the written notice a statement that the permissible exposure limit was exceeded and a description of the corrective action taken to reduce exposure to or below the permissible exposure limit.

- (f) Accuracy of measurement.
 - (i) The employer shall use a method of monitoring and measurement which has an accuracy (with a confidence level of 95 percent) of not less than plus or minus 25 percent for concentrations of inorganic arsenic greater than or equal to 10 μg/m³.
 - (ii) The employer shall use a method of monitoring and measurement which has an accuracy (with confidence level of 95 percent) of not less than plus or minus 35 percent for concentrations of inorganic arsenic greater than 5 μg/m³ but less than 10 μg/m³.

(6) Regulated area.

- (a) Establishment. The employer shall establish regulated areas where worker exposures to inorganic arsenic, without regard to the use of respirators, are in excess of the permissible limit.
- (b) Demarcation. Regulated areas shall be demarcated and segregated from the rest of the workplace in any manner that minimizes the number of persons who will be exposed to inorganic arsenic.
- (c) Access. Access to regulated areas shall be limited to authorized persons or to persons otherwise authorized by the Act or regulations issued pursuant thereto to enter such areas.
- (d) Provision of respirators. All persons entering a regulated area shall be supplied with a respirator, selected in accordance with subsection (8)(c) of this section.
- (e) Prohibited activities. The employer shall assure that in regulated areas, food or beverages are not consumed, smoking products, chewing tobacco and gum are not used and cosmetics are not applied, except that these activities may be conducted in the lunchrooms, change rooms and showers required under subsection (12) of this section. Drinking water may be consumed in the regulated area.

(7) **Methods of compliance.**

- (a) Controls.
 - (i) The employer shall institute engineering and work-practice controls to reduce exposures to or below the permissible exposure limit, except to the extent that the employer can establish that such controls are not feasible.
 - (ii) Where engineering and work-practice controls are not sufficient to reduce exposures to or below the permissible exposure limit, they shall nonetheless be used to reduce exposures to the lowest levels achievable by these controls and shall be supplemented by the use of respirators in accordance with subsection (8) of this section and other necessary personal protective equipment. Employee rotation is not required as a control strategy before respiratory protection is instituted.
- (b) Compliance program.
 - (i) The employer shall establish and implement a written program to reduce exposures to or below the permissible exposure limit by means of engineering and work-practice controls.
 - (ii) Written plans for these compliance programs shall include at least the following:

- (A) A description of each operation in which inorganic arsenic is emitted; e.g., machinery used, material processed, controls in place, crew size, operating procedures and maintenance practices;
- (B) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic;
- (C) A report of the technology considered in meeting the permissible exposure limit;
- (D) Monitoring data;
- (E) A detailed schedule for implementation of the engineering controls and work-practices that cannot be implemented immediately and for the adaption and implementation of any additional engineering and work-practices necessary to meet the permissible exposure limit;
- (F) Whenever the employer will not achieve the permissible exposure limit with engineering controls and work-practices, the employer shall include in the compliance plan an analysis of the effectiveness of the various controls, shall install engineering controls and institute work-practices on the quickest schedule feasible, and shall include in the compliance plan and implement a program to minimize the discomfort and maximize the effectiveness of respirator use; and
- (G) Other relevant information.
- (iii) Written plans for such a program shall be submitted upon request to the director, and shall be available at the worksite for examination and copying by the director, any affected employee or authorized employee representatives.
- (iv) The plans required by this subsection shall be revised and updated at least every six months to reflect the current status of the program.

(8) **Respiratory protection.**

- (a) General. For employees who use respirators required by this section, the employer must provide respirators that comply with the requirements of this subsection. Respirators must be used during:
 - (i) Periods necessary to install or implement feasible engineering or work-practice controls;
 - (ii) Work operations, such as maintenance and repair activities, in which the employer establishes that engineering and work-practice controls are not feasible;
 - (iii) Work operations for which engineering work-practice controls are not yet sufficient to reduce employee exposures to or below the permissible exposure limit;
 - (iv) Emergencies.
- (b) Respirator program.

Part G Carcinogens (Specific)

(i) The employer must establish, implement, and maintain a respiratory protection program as required by chapter 296-62 WAC, Part E (except WAC 296-62-07130(1) and 296-62-07150 through 296-62-07156).

- (ii) If an employee exhibits breathing difficulty during fit testing or respirator use, they must be examined by a physician trained in pulmonary medicine to determine whether they can use a respirator while performing the required duty.
- (c) Respirator selection.
 - (i) The employer must use Table I of this section to select the appropriate respirator or combination of respirators for inorganic arsenic compounds without significant vapor pressure, and Table II of this section to select the appropriate respirator or combination of respirators for inorganic arsenic compounds that have significant vapor pressure.
 - (ii) Where employee exposures exceed the permissible exposure limit for inorganic arsenic and also exceed the relevant limit for other gases (for example, sulfur dioxide), any airpurifying respirator provided to the employee as specified by this section must have a combination high-efficiency filter with an appropriate gas sorbent. (See footnote in Table I)
 - (iii) Employees required to use respirators may choose, and the employer must provide, a powered air-purifying respirator if it will provide proper protection. In addition, the employer must provide a combination dust and acid-gas respirator to employees who are exposed to gases over the relevant exposure limits.

TABLE I
RESPIRATORY PROTECTION FOR INORGANIC ARSENIC
PARTICULATE EXCEPT FOR THOSE WITH SIGNIFICANT
VAPOR
PRESSURE

Concer	ntration of Inorganic Arsenic		
(as As) or Condition of Use		Respirator Required	
(i)	Unknown or greater or lesser		
	than $20,000 \mu \text{g/m}^3$ (20	(A)	Any full facepiece self-contained breathing
mg/m^3)	firefighting.		apparatus operated in positive-pressure mode.
(ii)	Not greater than 20,000	(A)	Supplied-air respirator with full facepiece,
$\mu g/m^3$	(20 mg/m^3)		hood, or helmet or suit and operated in
			positive-pressure mode.
(iii)	Not greater than 10,000	(A)	Powered air-purifying respirators in all inlet
	$\mu g/m^3 (10 \text{ mg/m}^3)$		face coverings with high-efficiency filters. ¹
		(B)	Half-mask supplied air respirators operated in
			positive-pressure mode.
(iv)	Not greater than 500 μg/m ³	(A)	Full facepiece air-purifying respirator
			equipped with high-efficiency filter. ¹
		(B)	Any full facepiece supplied-air respirator.
		(C)	Any full facepiece self-contained breathing
			apparatus.
(v)	Not greater than 100 μg/m ³	(A)	Half-mask air-purifying respirator equipped
			with high-efficiency filter.1
		(B)	Any half-mask supplied-air respirator.

¹High-efficiency filter-99.97 pct efficiency against 0.3 micrometer monodisperse diethyl-hexyl phthalate (DOP) particles.

TABLE II RESPIRATORY PROTECTION FOR INORGANIC ARSENICALS (SUCH AS ARSENIC TRICHLORIDE 2 AND ARSENIC PHOSPHIDE)

WITH SIGNIFICANT VAPOR PRESSURE

Concentration of Inorganic Arsenic (as As) or Condition of Use			Respirator Required
(i)	Unknown or greater or lesser		•
	than 20,000 $\mu g/m^3$ (20	(A)	Any full facepiece contained breathing
mg/m^3)	or firefighting.		apparatus operated in positive-pressure mode.
(ii)	Not greater than 20,000	(A)	Any full facepiece contained breathing
	$\mu g/m^3 (20 \text{ mg/m}^3)$		apparatus operated in positive-pressure mode.
		(B)	Supplied-air respirator with full facepiece
			hood, or helmet or suit and operated in
			positive-pressure mode.
(iii)	Not greater than 10,000	(A)	Half-mask ² supplied air respirator operated in
	$\mu g/m^3 (10 \text{ mg/m}^3)$		positive-pressure mode.
(iv)	Not greater than 500 μg/m ³	(A)	Front or back mounted gas mask equipped
			with high-efficiency filter ¹ and acid gas
			canister.
		(B)	Any full facepiece supplied-air respirator.
		(C)	Any full facepiece self-contained breathing
			apparatus.
(v)	Not greater than 100 μg/m ³	(A)	half-mask ² air-purifying respirator equipped
			with high-efficiency filter ¹ and acid gas
			cartridge.
		(B)	Any half-mask supplied-air respirator.

¹High efficiency filter-99.97 pct efficiency against 0.3 micrometer monodisperse diethyl-hexyl phthalate (DOP) particles.

²Half-mask respirators shall not be used for protection against arsenic trichloride, as it is rapidly absorbed through the skin.

(9) Reserved.

(10) Protective work clothing and equipment.

- (a) Provision and use. Where the possibility of skin or eye irritation from inorganic arsenic exists, and for all workers working in regulated areas, the employer shall provide at no cost to the employee and assure that employees use appropriate and clean protective work clothing and equipment such as, but not limited to:
 - (i) Coveralls or similar full-body work clothing;
 - (ii) Gloves, and shoes or coverlets;
 - (iii) Face shields or vented goggles when necessary to prevent eye irritation, which comply with the requirements of WAC 296-800-160.

Part G Carcinogens (Specific)

(iv) Impervious clothing for employees subject to exposure to arsenic trichloride.

- (b) Cleaning and replacement.
 - (i) The employer shall provide the protective clothing required in subsection (10)(a) of this section in a freshly laundered and dry condition at least weekly, and daily if the employee works in areas where exposures are over 100 μg/m³ of inorganic arsenic or in areas where more frequent washing is needed to prevent skin irritation.
 - (ii) The employer shall clean, launder, or dispose of protective clothing required by subsection (10)(a) of this section.
 - (iii) The employer shall repair or replace the protective clothing and equipment as needed to maintain their effectiveness.
 - (iv) The employer shall assure that all protective clothing is removed at the completion of a work shift only in change rooms prescribed in subsection (13)(a) of this section.
 - (v) The employer shall assure that contaminated protective clothing which is to be cleaned, laundered, or disposed of, is placed in a closed container in the change-room which prevents dispersion of inorganic arsenic outside the container.
 - (vi) The employer shall inform in writing any person who cleans or launders clothing required by this section, of the potentially harmful affects including the carcinogenic effects of exposure to inorganic arsenic.
 - (vii) The employer shall assure that the containers of contaminated protective clothing and equipment in the workplace or which are to be removed from the workplace are labeled as follows:

CAUTION: Clothing contaminated with inorganic arsenic; do not remove dust by blowing or shaking.

Dispose of inorganic arsenic contaminated wash water in accordance with applicable local, state, or federal regulations.

(viii) The employer shall prohibit the removal of inorganic arsenic from protective clothing or equipment by blowing or shaking.

(11) Housekeeping.

- (a) Surfaces. All surfaces shall be maintained as free as practicable of accumulations of inorganic arsenic.
- (b) Cleaning floors. Floors and other accessible surfaces contaminated with inorganic arsenic may not be cleaned by the use of compressed air, and shoveling and brushing may be used only where vacuuming or other relevant methods have been tried and found not to be effective.
- (c) Vacuuming. Where vacuuming methods are selected, the vacuums shall be used and emptied in a manner to minimize the reentry of inorganic arsenic into the workplace.
- (d) Housekeeping plan. A written housekeeping and maintenance plan shall be kept which shall list appropriate frequencies for carrying out housekeeping operations, and for cleaning and maintaining dust collection equipment. The plan shall be available for inspection by the director.

(e) Maintenance of equipment. Periodic cleaning of dust collection and ventilation equipment and checks of their effectiveness shall be carried out to maintain the effectiveness of the system and a notation kept of the last check of effectiveness and cleaning or maintenance.

(12) Reserved.

(13) Hygiene facilities and practices.

- (a) Change rooms. The employer shall provide for employees working in regulated areas or subject to the possibility of skin or eye irritation from inorganic arsenic, clean change rooms equipped with storage facilities for street clothes and separate storage facilities for protective clothing and equipment in accordance with WAC 296-24-12011.
- (b) Showers.
 - (i) The employer shall assure that employees working in regulated areas or subject to the possibility of skin or eye irritation from inorganic arsenic shower at the end of the work shift.
 - (ii) The employer shall provide shower facilities in accordance with WAC 296-24-12009(3).
- (c) Lunchrooms.
 - (i) The employer shall provide for employees working in regulated areas, lunchroom facilities which have a temperature controlled, positive pressure, filtered air supply, and which are readily accessible to employees working in regulated areas.
 - (ii) The employer shall assure that employees working in the regulated area or subject to the possibility of skin or eye irritation from exposure to inorganic arsenic wash their hands and face prior to eating.
- (d) Lavatories. The employer shall provide lavatory facilities which comply with WAC 296-800-230.
- (e) Vacuuming clothes. The employer shall provide facilities for employees working in areas where exposure, without regard to the use of respirators, exceeds 100 μg/m³ to vacuum their protective clothing and clean or change shoes worn in such areas before entering change rooms, lunchrooms or shower rooms required by subsection (10) of this section and shall assure that such employees use such facilities.
- (f) Avoidance of skin irritation. The employer shall assure that no employee is exposed to skin or eye contact with arsenic trichloride, or to skin or eye contact with liquid or particulate inorganic arsenic which is likely to cause skin or eye irritation.

(14) Medical surveillance.

- (a) General.
 - (i) Employees covered. The employer shall institute a medical surveillance program for the following employees:

- (A) All employees who are or will be exposed above the action level, without regard to the use of respirators, at least thirty days per year; and
- (B) All employees who have been exposed above the action level, without regard to respirator use, for thirty days or more per year for a total of ten years or more of combined employment with the employer or predecessor employers prior to or after the effective date of this standard. The determination of exposures prior to the effective date of this standard shall be based upon prior exposure records, comparison with the first measurements taken after the effective date of this standard, or comparison with records of exposures in areas with similar processes, extent of engineering controls utilized and materials used by that employer.
- (ii) Examination by physician. The employer shall assure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and shall be provided without cost to the employee, without loss of pay and at a reasonable time and place.
- (b) Initial examinations. For employees initially covered by the medical provisions of this section, or thereafter at the time of initial assignment to an area where the employee is likely to be exposed over the action level at least thirty days per year, the employer shall provide each affected employee an opportunity for a medical examination, including at least the following elements:
 - (i) A work history and a medical history which shall include a smoking history and the presence and degree of respiratory symptoms such as breathlessness, cough, sputum production and wheezing.
 - (ii) A medical examination which shall include at least the following:
 - (A) A 14" by 17" posterior-anterior chest x-ray and International Labor Office UICC/Cincinnati (ILO U/C) rating;
 - (B) A nasal and skin examination; and
 - (C) Other examinations which the physician believes appropriate because of the employees exposure to inorganic arsenic or because of required respirator use.
- (c) Periodic examinations.
 - (i) The employer shall provide the examinations specified in subsection (14)(b)(i) and (ii)(A), (B) and (C) of this section at least annually for covered employees who are under forty-five years of age with fewer than ten years of exposure over the action level without regard to respirator use.
 - (ii) The employer shall provide the examinations specified in subsection (14)(b)(i) and (ii)(B) and (C) of this section at least semi-annually, and the x-ray requirements specified in subsection (14(b)(ii)(A) of this section at least annually, for other covered employees.

- (iii) Whenever a covered employee has not taken the examinations specified in subsection (14)(b)(i) and (ii)(B) and (C) of this section within six months preceding the termination of employment, the employer shall provide such examinations to the employee upon termination of employment.
- (d) Additional examinations. If the employee for any reason develops signs or symptoms commonly associated with exposure to inorganic arsenic the employer shall provide an appropriate examination and emergency medical treatment.
- (e) Information provided to the physician. The employer shall provide the following information to the examining physician:
 - (i) A copy of this standard and its appendices;
 - (ii) A description of the affected employee's duties as they relate to the employee's exposure;
 - (iii) The employee's representative exposure level or anticipated exposure level;
 - (iv) A description of any personal protective equipment used or to be used; and
 - (v) Information from previous medical examinations of the affected employee which is not readily available to the examining physician.
- (f) Physician's written opinion.
 - (i) The employer shall obtain a written opinion from the examining physician which shall include:
 - (A) The results of the medical examination and tests performed;
 - (B) The physician's opinion as to whether the employee has any detected medical conditions which would place the employee at increased risk of material impairment of the employee's health from exposure to inorganic arsenic;
 - (C) Any recommended limitations upon the employee's exposure to inorganic arsenic or upon the use of protective clothing or equipment such as respirators; and
 - (D) A statement that the employee has been informed by the physician of the results of the medical examination and any medical conditions which require further examination or treatment.
 - (ii) The employer shall instruct the physician not to reveal in the written opinion specific findings or diagnoses unrelated to occupational exposure.
 - (iii) The employer shall provide a copy of the written opinion to the affected employee.

(15) Employee information and training.

(a) Training program.

- (i) The employer shall institute a training program for all employees who are subject to exposure to inorganic arsenic above the action level without regard to respirator use, or for whom there is the possibility of skin or eye irritation from inorganic arsenic. The employer shall assure that those employees participate in the training program.
- (ii) The training program shall be provided by October 1, 1978 for employees covered by this provision, at the time of initial assignment for those subsequently covered by this provision, and shall be repeated at least quarterly for employees who have optional use of respirators and at least annually for other covered employees thereafter, and the employer shall assure that each employee is informed of the following:
 - (A) The information contained in Appendix A;
 - (B) The quantity, location, manner of use, storage, sources of exposure, and the specific nature of operations which could result in exposure to inorganic arsenic as well as any necessary protective steps;
 - (C) The purpose, proper use, and limitation of respirators;
 - (D) The purpose and a description of medical surveillance program as required by subsection (14) of this section;
 - (E) The engineering controls and work-practices associated with the employee's job assignment; and
 - (F) A review of this standard.
- (b) Access to training materials.
 - (i) The employer shall make readily available to all affected employees a copy of this standard and its appendices.
 - (ii) The employer shall provide, upon request, all materials relating to the employee information and training program to the director.

(16) Signs and labels.

- (a) General.
 - (i) The employer may use labels or signs required by other statutes, regulations, or ordinances in addition to, or in combination with, signs and labels required by this subsection.
 - (ii) The employer shall assure that no statement appears on or near any sign or label required by this subsection which contradicts or detracts from the meaning of the required sign or label.
- (b) Signs.
 - (i) The employer shall post signs demarcating regulated areas bearing the legend:

DANGER INORGANIC ARSENIC CANCER HAZARD AUTHORIZED PERSONNEL ONLY NO SMOKING OR EATING RESPIRATOR REQUIRED

- (ii) The employer shall assure that signs required by this subsection are illuminated and cleaned as necessary so that the legend is readily visible.
- (c) Labels. The employer shall apply precautionary labels to all shipping and storage containers of inorganic arsenic, and to all products containing inorganic arsenic except when the inorganic arsenic in the product is bound in such a manner so as to make unlikely the possibility of airborne exposure to inorganic arsenic. (Possible examples of products not requiring labels are semiconductors, light emitting diodes and glass.) The label shall bear the following legend:

DANGER CONTAINS INORGANIC ARSENIC CANCER HAZARD HARMFUL IN INHALED OR SWALLOWED USE ONLY WITH ADEQUATE VENTILATION OR RESPIRATORY PROTECTION

(17) **Recordkeeping.**

- (a) Exposure monitoring.
 - (i) The employer shall establish and maintain an accurate record of all monitoring required by subsection (5) of this section.
 - (ii) This record shall include:
 - (A) The date(s), number, duration location, and results of each of the samples taken, including a description of the sampling procedure used to determine representative employee exposure where applicable;
 - (B) A description of the sampling and analytical methods used and evidence of their accuracy;
 - (C) The purpose, proper use, limitations, and other training requirements covering respiratory protection as required in chapter 296-62 WAC, Part E;
 - (D) Name, Social Security number, and job classification of the employees monitored and of all other employees whose exposure the measurement is intended to represent; and
 - (E) The environmental variables that could affect the measurement of the employee's exposure.
 - (iii) The employer shall maintain these monitoring records for at least forty years or for the duration of employment plus twenty years, whichever is longer.

- (b) Medical surveillance.
 - (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance as required by subsection (14) of this section.
 - (ii) This record shall include:
 - (A) The name, Social Security number, and description of duties of the employee;
 - (B) A copy of the physician's written opinions;
 - (C) Results of any exposure monitoring done for that employee and the representative exposure levels supplied to the physician; and
 - (D) Any employee medical complaints related to exposure to inorganic arsenic.
 - (iii) The employer shall in addition keep, or assure that the examining physician keeps, the following medical records:
 - (A) A copy of the medical examination results including medical and work history required under subsection (14) of this section;
 - (B) A description of the laboratory procedures and a copy of any standards or guidelines used to interpret the test results or references to that information;
 - (C) The initial x-ray;
 - (D) The x-rays for the most recent five years; and
 - (E) Any x-rays with a demonstrated abnormality and all subsequent x-rays.
 - (iv) The employer shall maintain or assure that the physician maintains those medical records for at least forty years, or for the duration of employment, plus twenty years, whichever is longer.
- (c) Availability.
 - (i) The employer shall make available upon request all records required to be maintained by subsection (17) of this section to the director for examination and copying.
 - (ii) Records required by this subsection shall be provided upon request to employees, designated representatives, and the assistant director in accordance with WAC 296-62-05201 through 296-62-05209 and 296-62-05213 through 296-62-05217.
 - (iii) The employer shall make available upon request an employee's medical records and exposure records representative of that employee's exposure required to be maintained by subsection (17) of this section to the affected employee or former employee or to a physician designated by the affected employee or former employee.

- (d) Transfer of records.
 - (i) Whenever the employer ceases to do business, the successor employer shall receive and retain all records required to be maintained by this section.
 - (ii) Whenever the employer ceases to do business and there is no successor employer to receive and retain the records required to be maintained by this section for the prescribed period, these records shall be transmitted to the director.
 - (iii) At the expiration of the retention period for the records required to be maintained by this section, the employer shall notify the director at least three months prior to the disposal of such records and shall transmit those records to the director if he requests them within that period.
 - (iv) The employer shall also comply with any additional requirements involving transfer of records set forth in WAC 296-62-05215.

(18) **Observation of monitoring.**

- (a) Employee observation. The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to inorganic arsenic conducted pursuant to subsection (5) of this section.
- (b) Observation procedures.
 - (i) Whenever observation of the monitoring of employee exposure to inorganic arsenic requires entry into an area where the use of respirators, protective clothing, or equipment is required, the employer shall provide the observer with and assure the use of such respirators, clothing, and such equipment, and shall require the observer to comply with all other applicable safety and health procedures.
 - (ii) Without interfering with the monitoring, observers shall be entitled to;
 - (A) Receive an explanation of the measurement procedures;
 - (B) Observe all steps related to the monitoring of inorganic arsenic performed at the place of exposure; and
 - (C) Record the results obtained or receive copies of the results when returned by the laboratory.
- (19) **Appendices.** The information contained in the appendices to this section is not intended by itself, to create any additional obligations not otherwise imposed by this standard nor detract from any existing obligation.

[Statutory Authority: RCW 49.17.010, .040, .050. 01-11-038 (Order 99-36), § 296-62-07347, filed 05/09/01, effective 09/01/01. Statutory Authority: RCW 49.17.010, .040, .050. 99-17-094 (Order 99-01, § 296-62-07347, filed 08/17/99, effective 12/01/99. Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (order 98-10) § 296-62-07347, filed 05/04/99, effective 09/01/99.] Statutory Authority: RCW 49.17.010, [49.17].040 and [49.17].050. 98-02-030, § 296-62-07347, filed 12/31/97, effective 1/31/98. Statutory Authority: Chapter 49.17 RCW. 94-15-096 (Order 94-07), § 296-62-07347, filed 7/20/94, effective 9/20/94. Statutory Authority: RCW 49.17.050 and 49.17.240. 81-18-029 (Order 81-21), § 296-62-07347, filed 8/27/81; 81-16-015 (Order 81-20), § 296-62-07347, filed 7/27/81; 79-08-115 (Order 79-9), § 296-62-07347, filed 7/31/79; 79-02-037 (Order 79-1), § 296-62-07347, filed 1/23/79.]

WAC 296-62-07354 Appendices--Inorganic arsenic. The information in Appendices A, B, and C is not intended, by itself, to create any additional obligations not otherwise imposed by WAC 296-62-07347 nor detract from existing obligation.

- (1) Appendix A--Inorganic arsenic substance information sheet.
 - (a) Substance identification.
 - (i) Substance. Inorganic arsenic.
 - (ii) Definition. Copper acetoarsenite, arsenic and all inorganic compounds containing arsenic except arsine, measured as arsenic (As).
 - (iii) Permissible exposure limit. Ten micrograms per cubic meter of air as determined as an average over an 8 hour period. No employee may be exposed to any skin or eye contact with arsenic trichloride or to skin or eye contact likely to cause skin or eye irritation.
 - (iv) Regulated areas. Only employees authorized by your employer should enter a regulated area.
 - (b) Health hazard data.
 - (i) Comments. The health hazard of inorganic arsenic is high.
 - (ii) Ways in which the chemical affects your body. Exposure to airborne concentrations of inorganic arsenic may cause lung cancer, and can be a skin irritant. Inorganic arsenic may also affect your body if swallowed. One compound in particular, arsenic trichloride, is especially dangerous because it can be absorbed readily through the skin. Because inorganic arsenic is a poison, you should wash your hands thoroughly prior to eating or smoking.
 - (c) Personal protective equipment and clothing.
 - (i) Respirators. Respirators will be provided by the employer at no cost to employees for routine use if the employer is in the process of implementing engineering and work-practice controls or where engineering and work-practice controls are not feasible or insufficient. Respirators must be worn for nonroutine activities or in emergency situations where there is likely to be exposure to levels of inorganic arsenic in excess of the permissible exposure limit. Since how well the respirator fits is very important, the employer is required to conduct fit tests to make sure the respirator seals properly when worn. These tests are simple and rapid and will be explained during training sessions.
 - (ii) Protective clothing. If work is in a regulated area, the employer is required to provide at no cost to employees, and it must be worn, appropriate, clean, protective clothing and equipment. The purpose of this equipment is to prevent the employee from taking home arsenic-contaminated dust and to protect the body from repeated skin contact with inorganic arsenic likely to cause skin irritation. This clothing shall include such items as coveralls or similar full-body clothing, gloves, shoes or coverlets, and aprons. Protective equipment should include face shields or vented goggles, where eye irritation may occur.
 - (d) Hygiene facilities and practices.
 - (i) The employer shall ensure that employees do not eat, drink, smoke, chew gum or tobacco, or apply cosmetics in the regulated area, except that drinking water is permitted. If work is in a regulated area, the employer is required to provide lunchrooms or other areas for these purposes.

- (ii) If work is in a regulated area, the employer is required to provide showers, washing facilities, and change rooms. The employer shall ensure that employees wash faces and hands before eating and shower at the end of the work shift. Do not take used protective clothing out of change rooms without the employer's permission. The employer is required to provide for laundering or cleaning of the protective clothing.
- (e) Signs and labels. The employer is required to post warning signs and labels for employee protection. Signs must be posted in regulated areas. The signs must warn that a cancer hazard is present, that only authorized employees may enter the area, and that no smoking or eating is allowed, and that respirators must be worn.
- (f) Medical examinations. If exposure to arsenic is over the action level (5 μg/m³) (including all persons working in regulated areas) at least 30 days per year, or employees have been exposed to arsenic for more than 10 years over the action level, the employer is required to provide employees with a medical examination. The examination shall be every 6 months for employees over 45 years old or with more than 10 years exposure over the action level and annually for other covered employees. The medical examination must include a medical history; a chest x-ray (annual requirement only); skin examination; and nasal examination. The examining physician will provide a written opinion to the employer containing the results of the medical exams. Employees should also receive a copy of this opinion. The physician must not tell the employer any conditions he detects unrelated to occupational exposure to arsenic but must tell employees those conditions.
- (g) Observation of monitoring. The employer is required to monitor employee exposure to arsenic and employees or their representatives are entitled to observe the monitoring procedure. Employees are entitled to receive an explanation of the measurement procedure, and to record the results obtained. When the monitoring procedure is taking place in an area where respirators or personal protective clothing and equipment are required to be worn, employees must also be provided with and must wear the protective clothing and equipment.
- (h) Access to records. Employees or their representatives are entitled to records of employee exposure to inorganic arsenic upon request to the employer. Employee medical examination records can be furnished to employees' physician if employees request the employer to provide them.
- (i) Training and notification. Additional information on all of these items plus training as to hazards of exposure to inorganic arsenic and the engineering and work-practice controls associated with employees' jobs will also be provided by the employer. If employees are exposed over the permissible exposure limit, the employer must inform employees of that fact and the actions to be taken to reduce employee exposure.
- (2) **Appendix B--Substance technical guidelines.** Arsenic, arsenic trioxide, arsenic trichloride (3 examples)
 - (a) Physical and chemical properties
 - (i) Arsenic (metal)
 - (A) Formula: As
 - (B) Appearance: Gray metal
 - (C) Melting point: Sublimes without melting at 613C
 - (D) Specific gravity: $(H_20 = 1):5.73$.

- (E) Solubility in water: Insoluble
- (ii) Arsenic trioxide
 - (A) Formula: As_20_3 , (As_40_6) .
 - (B) Appearance: White powder
 - (C) Melting point: 315C
 - (D) Specific gravity: $(H_20 = 1):3.74$
 - (E) Solubility in water: 3.7 grams in 100cc of water at 20C
- (iii) Arsenic trichloride (liquid)(Trichloride)
 - (A) Formula: AsC13
 - (B) Appearance: Colorless or pale yellow liquid
 - (C) Melting point: -8.5C
 - (D) Boiling point: 130.2C
 - (E) Specific gravity (1120 = 1) 2:16 at 20C
 - (F) Vapor Pressure: 10mm Hg at 23.5C.
 - (G) Solubility in water: Decomposes in water.
- (b) Fire, explosion, and reactivity data.
 - (i) Fire: Arsenic trioxide and arsenic trichloride are nonflammable.
 - (ii) Reactivity:
 - (A) Conditions contributing to instability: Heat.
 - (B) Incompatibility: Hydrogen gas can react with inorganic arsenic to form the highly toxic gas arsine.
- (c) Monitoring and measurement procedures.
 - (i) Samples collected should be full shift (at least 7 hours) samples. Sampling should be done using a personal sampling pump at a flow rate of 2 liters per minute. Samples should be collected on 0.8 micrometer pore size membrane filter (37mm diameter). Volatile arsenicals such as arsenic trichloride can be most easily collected in a midget bubbler filled with 15 ml. of 0.1 N NaOH.

(ii) The method of sampling and analysis should have an accuracy of not less than \pm 25 percent (with a confidence limit of 95 percent) for 10 micrograms per cubic meter of air (10 µg/m³) and \pm 35 percent (with a confidence limit of 95 percent) for concentrations of inorganic arsenic between 5 and 10 µg/m³.

(3) Appendix C--Medical surveillance guidelines.

- (a) General.
 - (i) Medical examinations are to be provided for all employees exposed to levels of inorganic arsenic above the action level ($5 \mu g/m^3$) for at least 30 days per year (which would include among others, all employees, who work in regulated areas). Examinations are also to be provided to all employees who have had 10 years or more exposure above the action level for more than 30 days per year while working for the present or predecessor employer though they may no longer be exposed above the level.
 - (ii) An initial medical examination is to be provided to all such employees by December 1, 1978. In addition, an initial medical examination is to be provided to all employees who are first assigned to areas in which worker exposure will probably exceed 5 μg/m³ (after the effective date of this standard) at the time of initial assignment. In addition to its immediate diagnostic usefulness the initial examination will provide a baseline for comparing future test results. The initial examination must include as a minimum the following elements:
 - (A) A work and medical history, including a smoking history, and presence and degree of respiratory symptoms such as breathlessness, cough, sputum production, and wheezing;
 - (B) A 14-inch by 17-inch posterior-anterior chest x-ray and an International Labor Office UICC/Cincinnati (ILO U/C) rating;
 - (C) A nasal and skin examination; and
 - (D) Other examinations which the physician believes appropriate because of the employee's exposure to inorganic arsenic or because of required respirator use.
 - (iii) Periodic examinations are also to be provided to the employees listed above. The periodic examinations shall be given annually for those covered employees 45 years of age or less with fewer than 10 years employment in areas where employee exposure exceeds the action level ($5 \mu g/m^3$). Periodic examinations need not include sputum cytology and only an updated medical history is required.
 - (iv) Periodic examinations for other covered employees, shall be provided every 6 months. These examinations shall include all tests required in the initial examination, except that the medical history need only be updated.
 - (v) The examination contents are minimum requirements. Additional tests such as lateral and oblique x-rays or pulmonary function tests may be useful. For workers exposed to 3 arsenicals, copper acetoarsenite, potassium arsenite, or sodium arsenite, which are associated with lymphatic cancer, the examination should also include palpation of superficial lymph nodes and complete blood count.

- (b) Noncarcinogenic effects.
 - (i) The WISHA standard is based on minimizing risk of exposed workers dying of lung cancer from exposure to inorganic arsenic. It will also minimize skin cancer from such exposures.
 - (ii) The following three sections quoted from "Occupational Diseases: A Guide to Their Recognition," Revised Edition, June 1977, National Institute for Occupational Safety and Health is included to provide information on the nonneoplastic effects of exposure to inorganic arsenic. Such effects should not occur if the WISHA standards are followed.
 - (A) Local--Trivalent arsenic compounds are corrosive to the skin. Brief contact has no effect but prolonged contact results in a local hyperemia and later vesicular or pustular eruption. The moist mucous membranes are most sensitive to the irritant action. Conjunctiva, moist and macerated areas of skin, the eyelids, the angles of the ears, nose, mouth, and respiratory mucosa are also vulnerable to the irritant effects. The wrists are common sites of dermatitis, as are the genitalia if personal hygiene is poor. Perforations of the nasal septum may occur. Arsenic trioxide and pentoxide are capable of producing skin sensitization and contact dermatitis. Arsenic is also capable of producing keratoses, especially of the palms and soles.
 - (B) Systemic.
 - (I) The acute toxic effects of arsenic are generally seen following ingestion of inorganic arsenical compounds. This rarely occurs in an industrial setting. Symptoms develop within 1/2 to 4 hours following ingestion and are usually characterized by constriction of the throat followed by dysphagia, epigastric pain, vomiting, and watery diarrhea. Blood may appear in vomitus and stools. If the amount ingested is sufficiently high, shock may develop due to severe fluid loss, and death may ensue in 24 hours. If the acute effects are survived, exfoliative dermatitis and peripheral neuritis may develop.
 - (II) Cases of acute arsenical poisoning due to inhalation are exceedingly rare in industry. When it does occur, respiratory tract symptoms cough, chest pain, dyspnea giddiness, headache, and extreme general weakness precede gastrointestinal symptoms. The acute toxic symptoms of trivalent arsenical poisoning are due to severe inflammation of the mucous membranes and greatly increased permeability of the blood capillaries.
 - (III) Chronic arsenical poisoning due to ingestion is rare and generally confined to patients taking prescribed medications. However, it can be a concomitant of inhaled inorganic arsenic from swallowed sputum and improper eating habits. Symptoms are weight loss, nausea and diarrhea alternating with constipation, pigmentation and eruption of the skin, loss of hair, and peripheral neuritis. Chronic hepatitis and cirrhosis have been described. Polyneuritis may be the salient feature, but more frequently there are numbness and parasthenias of "glove and stocking" distribution. The skin lesions are usually melanotic and keratotic and may occasionally take the form of an intradermal cancer of the squamous cell type, but without infiltrative properties. Horizontal white lines (striations) on the fingernails and toenails are

commonly seen in chronic arsenical poisoning and are considered to be a diagnostic accompaniment of arsenical polyneuritis.

WAC 296-62-07354 (Cont.)

- (IV) Inhalation of inorganic arsenic compounds is the most common cause of chronic poisoning in the industrial situation. This condition is divided into three phases based on signs and symptoms.
- (V) First phase: The worker complains of weakness, loss of appetite, some nausea, occasional vomiting, a sense of heaviness in the stomach, and some diarrhea.
- (VI) Second phase: The worker complains of conjunctivitis, a catarrhal state of the mucous membranes of the nose, larynx, and respiratory passage. Coryza, hoarseness, and mild tracheobronchitis may occur. Perforation of the nasal septum is common, and is probably the most typical lesion of the upper respiratory tract in occupational exposure to arsenical dust. Skin lesions, eczematoid and allergic in type, are common.
- (VII) Third phase: The worker complains of symptoms of peripheral neuritis, initially of hands and feet, which is essentially sensory. In more severe cases, motor paralyses occur; the first muscles affected are usually the toe extensors and the peronei. In only the most severe cases will paralysis of flexor muscles of the feet or of the extensor muscles of hands occur.
- (VIII) Liver damage from chronic arsenical poisoning is still debated, and as yet the question is unanswered. In cases of chronic and acute arsenical poisoning, toxic effects to the myocardium have been reported based on EKG changes. These findings, however, are now largely discounted and the EKG changes are ascribed to electrolyte disturbances concomitant with arsenicalism. Inhalation of arsenic trioxide and other inorganic arsenical dusts does not give rise to radiological evidence or pneumoconiosis. Arsenic does have a depressant effect upon the bone marrow, with disturbances of both erythropoiesis and myclopoiesis.

(4) **Bibliography:**

Dinman, B. D. 1960. Arsenic; Chronic Human Intoxication. Journal Occupational Medicine 2:137.

Elkins, H.B. 1959. The Chemistry of Industrial Toxicology, Second Edition. John Wiley and sons, New York.

Holquist, L. 1951. Occupational Arsenical Dermatitis; A Study Among Employees at a Copper-Ore Smelting Works Including Investigations of Skin Reactions to Contact with Arsenic Compounds. Acta. Derm. Venereol. (Supplement 26) 31:1.

Pinto, S. S., and C. M. McGill. 1953. Arsenic Trioxide Exposure in Industry. Ind. Med. Surg. 22:281.

Pinto, S. S., and K. W. Nelson. 1976. Arsenic Toxicology and Industrial Exposure, Annu. Rev. Paramacol. Toxicol. 16:95.

Vallee, B. L., Ulmer, D. D., and W. E. C. Wacker. 1960. Arsenic Toxicology and Biochemistry. AMA Arch. Indust. Health 21:132.

Chapter 296-62 WAC General Occupational Health Standards

Part G Carcinogens (Specific)

[Statutory Authority: RCW 49.17.010, .040, .050. 99-17-094 (Order 99-01, § 296-62-07347, filed 08/17/99, effective 12/01/99. Statutory Authority: RCW 49.17.010, [49.17].040 and [49.17].050. 98-02-030, § 296-62-07354, filed 12/31/97, effective 1/31/98. Statutory Authority: Chapter 49.17 RCW. 90-20-091 (Order 90-14), § 296-62-07354, filed 10/1/90, effective 11/15/90.]

WAC 296-62-07355 Ethylene oxide. Scope and application.

- (1) WAC 296-62-07355 through 296-62-07389 applies to all occupational exposures to ethylene oxide (EtO), Chemical Abstracts Service Registry No. 75-21-8, except as provided in subsection (2) of this section.
- (2) WAC 296-62-07355 through 296-62-07389 does not apply to the processing, use, or handling of products containing EtO where objective data are reasonably relied upon that demonstrate that the product is not capable of releasing EtO in airborne concentrations at or above the action level, and may not reasonably be foreseen to release EtO in excess of the excursion limit, under the expected conditions of processing, use, or handling that will cause the greatest possible release.
- (3) Where products containing EtO are exempted under subsection (2) of this section, the employer shall maintain records of the objective data supporting that exemption and the basis for the employer's reliance on the data, as provided in WAC 296-62-07375(1).

[Statutory Authority: Chapter 49.17 RCW. 91-24-017 (Order 91-07), § 296-62-07355, filed 11/22/91, effective 12/24/91;88-23-054 (Order 88-25), § 296-62-07355, filed 11/14/88; 87-24-051 (Order 87-24), § 296-62-07355, filed 11/30/87.]

WAC 296-62-07357 Definitions. For the purpose of WAC 296-62-07355 through 296-62-07389, the following definitions shall apply:

- (1) "Action level" means a concentration of airborne EtO of 0.5 ppm calculated as an eight-hour time-weighted average.
- (2) "Authorized person" means any person specifically authorized by the employer whose duties require the person to enter a regulated area, or any person entering such an area as a designated representative of employees for the purpose of exercising the right to observe monitoring and measuring procedures under WAC 296-62-07377, or any other person authorized by chapter 49.17 RCW or regulations issued under chapter 49.17 RCW.
- (3) "Director" means the director of the department of labor and industries, or designee.
- (4) **"Emergency"** means any occurrence such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment that is likely to or does result in an unexpected significant release of EtO.
- (5) **"Employee exposure"** means exposure to airborne EtO which would occur if the employee were not using respiratory protective equipment.
- (6) **"Ethylene oxide"** or **"EtO"** means the three-membered ring organic compound with chemical formula C₂H₄O.

[Statutory Authority: Chapter 49.17 RCW. 87-24-051 (Order 87-24), § 296-62-07357, filed 11/30/87.]

WAC 296-62-07359 Permissible exposure limits (PEL).

- (1) Eight-hour time-weighted average (TWA). The employer shall ensure that no employee is exposed to an airborne concentration of EtO in excess of one part EtO per million parts of air (1 ppm) as an eight-hour time-weighted average. (Eight-hour TWA.)
- (2) Excursion limit. The employer shall ensure that no employee is exposed to an airborne concentration of EtO in excess of five parts of EtO per million parts of air (5 ppm) as averaged over a sampling period of fifteen minutes.

[Statutory Authority: Chapter 49.17 RCW. 88-23-054 (Order 88-25), § 296-62-07359, filed 11/14/88; 87-24-051 (Order 87-24), § 296-62-07359, filed 11/30/87.]

WAC 296-62-07361 Exposure monitoring.

(1) General.

- (a) Determinations of employee exposure shall be made from breathing zone air samples that are representative of the eight-hour TWA and fifteen-minute short-term exposures of each employee.
- (b) Representative eight-hour TWA employee exposure shall be determined on the basis of one or more samples representing full-shift exposure for each shift for each job classification in each work area. Representative fifteen-minute short-term employee exposures shall be determined on the basis of one or more samples representing fifteen-minute exposures associated with operations that are most likely to produce exposures above the excursion limit for each shift for each job classification in each work area.
- (c) Where the employer can document that exposure levels are equivalent for similar operations in different work shifts, the employer need only determine representative employee exposure for that operation during one shift.

(2) Initial monitoring.

- (a) Each employer who has a workplace or work operation covered by WAC 296-62-07355 through 296-62-07389, except as provided in WAC 296-62-07355(2) or (b) of this subsection, shall perform initial monitoring to determine accurately the airborne concentrations of EtO to which employees may be exposed.
- (b) Where the employer has monitored after June 15, 1983, and the monitoring satisfies all other requirements of WAC 296-62-07355 through 296-62-07389, the employer may rely on such earlier monitoring results to satisfy the requirements of (a) of this subsection.
- (c) Where the employer has previously monitored for the excursion limit and the monitoring satisfies all other requirements of this section, the employer may rely on such earlier monitoring results to satisfy the requirements of (a) of this subsection.
- (3) Monitoring frequency (periodic monitoring).
 - (a) If the monitoring required by subsection (2) of this section reveals employee exposure at or above the action level but at or below the eight-hour TWA, the employer shall repeat such monitoring for each such employee at least every six months.
 - (b) If the monitoring required by subsection (2)(a) of this section reveals employee exposure above the eight-hour TWA, the employer shall repeat such monitoring for each such employee at least every three months.
 - (c) The employer may alter the monitoring schedule from quarterly to semiannually for any employee for whom two consecutive measurements taken at least seven days apart indicate that the employee's exposure has decreased to or below the eight-hour TWA.
 - (d) If the monitoring required by subsection (2)(a) of this section reveals employee exposure above the fifteen-minute excursion limit, the employer shall repeat such monitoring for each such employee at least every three months, and more often as necessary to evaluate the employee's short-term exposures.

(4) **Termination of monitoring.**

- (a) If the initial monitoring required by subsection (2)(a) of this section reveals employee exposure to be below the action level, the employer may discontinue TWA monitoring for those employees whose exposures are represented by the initial monitoring.
- (b) If the periodic monitoring required by subsection (3) of this section reveals that employee exposures, as indicated by at least two consecutive measurements taken at least seven days apart, are below the action level, the employer may discontinue TWA monitoring for those employees whose exposures are represented by such monitoring.
- (c) If the initial monitoring required by subsection (2)(a) of this section reveals the employee exposure to be at or below the excursion limit, the employer may discontinue excursion limit monitoring for those employees whose exposures are represented by the initial monitoring.
- (d) If the periodic monitoring required by subsection (3) of this section reveals that employee exposures, as indicated by at least two consecutive measurements taken at least seven days apart, are at or below the excursion limit, the employer may discontinue excursion limit monitoring for those employees whose exposures are represented by such monitoring.
- (5) **Additional monitoring.** Notwithstanding the provisions of subsection (4) of this section, the employer shall institute the exposure monitoring required under subsections (2)(a) and (3) of this section whenever there has been a change in the production, process, control equipment, personnel or work-practices that may result in new or additional exposures to EtO or when the employer has any reason to suspect that a change may result in new or additional exposures.

(6) Accuracy of monitoring.

- (a) Monitoring shall be accurate, to a confidence level of ninety-five percent, to within plus or minus twenty-five percent for airborne concentrations of EtO at the 1 ppm TWA and to within plus or minus thirty-five percent for airborne concentrations of EtO at the action level of 0.5 ppm.
- (b) Monitoring shall be accurate, to a confidence level of ninety-five percent, to within plus or minus thirty-five percent for airborne concentrations of EtO at the excursion limit.

(7) **Employee notification of monitoring results.**

- (a) The employer shall, within fifteen working days after the receipt of the results of any monitoring performed under WAC 296-62-07355 through 296-62-07389, notify the affected employee of these results in writing either individually or by posting of results in an appropriate location that is accessible to affected employees.
- (b) The written notification required by (a) of this subsection shall contain the corrective action being taken by the employer to reduce employee exposure to or below the TWA and/or excursion limit, wherever monitoring results indicated that the TWA and/or excursion limit has been exceeded.

[Statutory Authority: Chapter 49.17 RCW. 88-23-054 (Order 88-25), § 296-62-07361, filed 11/14/88; 87-24-051 (Order 87-24), § 296-62-07361, filed 11/30/87.]

WAC 296-62-07363 Regulated areas.

(1) The employer shall establish a regulated area wherever occupational exposures to airborne concentrations of EtO may exceed the TWA or wherever the EtO concentration exceeds or can reasonably be expected to exceed the excursion limit.

- (2) Access to regulated areas shall be limited to authorized persons.
- (3) Regulated areas shall be demarcated in any manner that minimizes the number of employees within the regulated area.

[Statutory Authority: Chapter 49.17 RCW. 88-23-054 (Order 88-25), § 296-62-07363, filed 11/14/88; 87-24-051 (Order 87-24), § 296-62-07363, filed 11/30/87.]

WAC 296-62-07365 Methods of compliance.

(1) Engineering controls and work-practices.

- (a) The employer shall institute engineering controls and work-practices to reduce and maintain employee exposure to or below the TWA and to or below the excursion limit, except to the extent that such controls are not feasible.
- (b) Wherever the feasible engineering controls and work-practices that can be instituted are not sufficient to reduce employee exposure to or below the TWA and to or below the excursion limit, the employer shall use them to reduce employee exposure to the lowest levels achievable by these controls and shall supplement them by the use of respiratory protection that complies with the requirements of WAC 296-62-07367.
- (c) Engineering controls are generally infeasible for the following operations: Collection of quality assurance sampling from sterilized materials removal of biological indicators from sterilized materials: Loading and unloading of tank cars; changing of ethylene oxide tanks on sterilizers; and vessel cleaning. For these operations, engineering controls are required only where the director demonstrates that such controls are feasible.

(2) **Compliance program.**

- (a) Where the TWA or excursion limit is exceeded, the employer shall establish and implement a written program to reduce employee exposure to or below the TWA and to or below the excursion limit by means of engineering and work-practice controls, as required by subsection (1) of this section, and by the use of respiratory protection where required or permitted under WAC 296-62-07355 through 296-62-07389.
- (b) The compliance program shall include a schedule for periodic leak detection surveys and a written plan for emergency situations, as specified in WAC 296-62-07369 (1)(a).
- (c) Written plans for a program required in this subsection shall be developed and furnished upon request for examination and copying to the director, affected employees and designated employee representatives. Such plans shall be reviewed at least every twelve months, and shall be updated as necessary to reflect significant changes in the status of the employer's compliance program.
- (d) The employer shall not implement a schedule of employee rotation as a means of compliance with the TWA or excursion limit.

[Statutory Authority: Chapter 49.17 RCW. 88-23-054 (Order 88-25), § 296-62-07365, filed 11/14/88; 87-24-051 (Order 87-24), § 296-62-07365, filed 11/30/87.]

WAC 296-62-07367 Respiratory protection and personal protective equipment.

(1) **General.** For employees who use respirators required by this section, the employer must provide respirators that comply with the requirements of WAC 296-62-07355 through 296-62-07389. Respirators must be used during:

- (a) Periods necessary to install or implement feasible engineering and work-practice controls;
- (b) Work operations, such as maintenance and repair activities, vessel cleaning, or other activities, for which engineering and work-practice controls are not feasible;
- (c) Work operations for which feasible engineering and work-practice controls are not yet sufficient to reduce employee exposure to or below the TWA or excursion limit;
- (d) Emergencies.
- (2) **Respirator program.** The employer must establish, implement, and maintain a respiratory protection program as required in chapter 296-62 WAC, Part E, (except WAC 296-62-07130(1) and 296-62-07150 through 296-62-07156).
- (3) **Respirator selection.** The employer must select the appropriate respirator from Table 1 of this section.

Table 1.-Minimum Requirements for Respiratory
Protection for Airborne EtO

Condition of use or concentration of airborne EtO		
(ppm)		Minimum required respirator
Equal to or less than 50	(a)	Full facepiece respirator with EtO approved
		canister, front-or back-mounted.
Equal to or less than 2,000	(a)	Positive-pressure supplied-air respirator, equipped
		with full facepiece, hood or helmet, or
	(b)	Continuous-flow supplied-air respirator (positive
		pressure) equipped with hood, helmet or suit.
Concentration above 2,000 or	(a)	Positive-pressure self-contained breathing
unknown concentration (such as		apparatus (SCBA), equipped with full facepiece,
in emergencies)		or
	(b)	Positive-pressure full facepiece supplied-air
		respirator equipped with an auxiliary positive-
		pressure self-contained breathing apparatus.
Firefighting	(a)	Positive-pressure self-contained breathing
		apparatus equipped with full facepiece.
Escape	(a)	Any respirator described above.

Note: Respirators approved for use in higher concentrations are permitted to be used in lower concentrations.

(4) **Protective clothing and equipment.** Where employees could have eye or skin contact with EtO or EtO solutions, the employer must select and provide, at no cost to the employee, appropriate protective clothing or other equipment in accordance with WAC 296-800-160, and to protect any area of the body that may come in contact with liquid EtO or EtO in solution, and must ensure that the employee wears the protective clothing and equipment provided.

[Statutory Authority: RCW 49.17.010, .040, .050. 01-11-038 (Order 99-36), § 296-62-07367, filed 05/09/01, effective 09/01/01. Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10) § 296-62-07367, filed 05/04/99, effective 09/01/99.] Statutory Authority: Chapter 49.17 RCW. 94-20-057 (Order 94-16), § 296-62-07367, filed 9/30/94, effective 11/20/94; 88-23-054 (Order 88-25), § 296-62-07367, filed 11/14/88; 87-24-051 (Order 87-24), § 296-62-07367, filed 11/30/87.]

WAC 296-62-07369 Emergency situations.

(1) Written plan.

- (a) A written plan for emergency situations shall be developed for each workplace where there is a possibility of an emergency. Appropriate portions of the plan shall be implemented in the event of an emergency.
- (b) The plan shall specifically provide that employees engaged in correcting emergency conditions shall be equipped with respiratory protection as required by WAC 296-62-07367 until the emergency is abated.
- (c) The plan shall include the elements prescribed in WAC 296-24-567, "Employee emergency plans and fire prevention plans."
- (2) Alerting employees. Where there is a possibility of employee exposure to EtO due to an emergency, means shall be developed to alert potentially affected employees of such occurrences promptly. Affected employees shall be immediately evacuated from the area in the event that an emergency occurs. [Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10) § 296-62-07369, filed 05/04/99, effective 09/01/99.] Statutory Authority: Chapter 49.17 RCW. 87-24-051 (Order 87-24), § 296-62-07369, filed 11/30/87.]

WAC 296-62-07371 Medical surveillance.

(1) **General.**

- (a) Employees covered.
 - (i) The employer shall institute a medical surveillance program for all employees who are or may be exposed to EtO at or above the action level, without regard to the use of respirators, for at least thirty days a year.
 - (ii) The employer shall make available medical examinations and consultations to all employees who have been exposed to EtO in an emergency situation.
- (b) Examination by a physician. The employer shall ensure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and are provided without cost to the employee, without loss of pay, and at a reasonable time and place.

(2) Medical examinations and consultations.

- (a) Frequency. The employer shall make available medical examinations and consultations to each employee covered under subsection (1)(a) of this section on the following schedules:
 - (i) Prior to assignment of the employee to an area where exposure may be at or above the action level for at least thirty days a year.
 - (ii) At least annually each employee exposed at or above the action level for at least thirty days in the past year.
 - (iii) At termination of employment or reassignment to an area where exposure to EtO is not at or above the action level for at least thirty days a year.
 - (iv) As medically appropriate for any employee exposed during an emergency.

- (v) As soon as possible, upon notification by an employee either (A) that the employee has developed signs or symptoms indicating possible overexposure to EtO, or (B) that the employee desires medical advice concerning the effects of current or past exposure to EtO on the employee's ability to produce a healthy child.
- (vi) If the examining physician determines that any of the examinations should be provided more frequently than specified, the employer shall provide such examinations to affected employees at the frequencies recommended by the physician.

(b) Content

- (i) Medical examinations made available pursuant to (a)(i) through (iv) of this subsection shall include:
 - (A) A medical and work history with special emphasis directed to symptoms related to the pulmonary, hematologic, neurologic, and reproductive systems and to the eyes and skin.
 - (B) A physical examination with particular emphasis given to the pulmonary, hematologic, neurologic, and reproductive systems and to the eyes and skin.
 - (C) A complete blood count to include at least a white cell count (including differential cell count), red cell count, hematocrit, and hemoglobin.
 - (D) Any laboratory or other test which the examining physician deems necessary by sound medical practice.
- (ii) The content of medical examinations or consultation made available pursuant to (a)(i)(v) of this subsection shall be determined by the examining physician, and shall include pregnancy testing or laboratory evaluation of fertility, if requested by the employee and deemed appropriate by the physician.
- (3) **Information provided to the physician.** The employer shall provide the following information to the examining physician:
 - (a) A copy of WAC 296-62-07355 through 296-62-07389.
 - (b) A description of the affected employee's duties as they relate to the employee's exposure.
 - (c) The employee's representative exposure level or anticipated exposure level.
 - (d) A description of any personal protective and respiratory equipment used or to be used.
 - (e) Information from previous medical examinations of the affected employee that is not otherwise available to the examining physician.

(4) **Physician's written opinion.**

(a) The employer shall obtain a written opinion from the examining physician. This written opinion shall contain the results of the medical examination and shall include:

- (i) The physician's opinion as to whether the employee has any detected medical conditions that would place the employee at an increased risk of material health impairment from exposure to EtO;
- (ii) Any recommended limitations on the employee or upon the use of personal protective equipment such as clothing or respirators; and
- (iii) A statement that the employee has been informed by the physician of the results of the medical examination and of any medical conditions resulting from EtO exposure that require further explanation or treatment.
- (b) The employer shall instruct the physician not to reveal in the written opinion given to the employer specific findings or diagnoses unrelated to occupational exposure to EtO.
- (c) The employer shall provide a copy of the physician's written opinion to the affected employee within fifteen days from its receipt.

[Statutory Authority: Chapter 49.17 RCW. 87-24-051 (Order 87-24), § 296-62-07371, filed 11/30/87.]

WAC 296-62-07373 Communication of EtO hazards to employees.

- (1) Signs and labels.
 - (a) The employer shall post and maintain legible signs demarcating regulated areas and entrances or accessways to regulated areas that bear the following legend:

DANGER ETHYLENE OXIDE CANCER HAZARD AND REPRODUCTIVE HAZARD AUTHORIZED PERSONNEL ONLY RESPIRATORS AND PROTECTIVE CLOTHING MAY BE REQUIRED TO BE WORN IN THIS AREA

(b) The employer shall ensure that precautionary labels are affixed to all containers of EtO whose contents are capable of causing employee exposure at or above the action level or whose contents may reasonably be foreseen to cause employee exposure above the excursion limit, and that the labels remain affixed when the containers of EtO leave the workplace. For the purpose of this subsection, reaction vessels, storage tanks, and pipes or piping systems are not considered to be containers. The labels shall comply with the requirements of WAC 296-800-170 of WISHA's chemical hazard communication standard, and shall include the following legend:

(i)

DANGER CONTAINS ETHYLENE OXIDE CANCER HAZARD AND REPRODUCTIVE HAZARD, and

- (ii) A warning statement against breathing airborne concentrations of EtO.
- (c) The labeling requirements under WAC 296-62-07355 through 296-62-07389 do not apply where EtO is used as a pesticide, as such term is defined in the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 136 et seq.), when it is labeled pursuant to that act and regulations issued under that act by the Environmental Protection Agency.

(2) **Material safety data sheets.** Employers who are manufacturers or importers of EtO shall comply with the requirements regarding development of material safety data sheets as specified in WAC 296-62-05413 of the hazard communication standard.

(3) **Information and training.**

- (a) The employer shall provide employees who are potentially exposed to EtO at or above the action level or above the excursion limit with information and training on EtO at the time of initial assignment and at least annually thereafter.
- (b) Employees shall be informed of the following:
 - (i) The requirements of WAC 296-62-07353 through 296-62-07389 with an explanation of its contents, including Appendices A and B;
 - (ii) Any operations in their work area where EtO is present;
 - (iii) The location and availability of the written EtO final rule; and
 - (iv) The medical surveillance program required by WAC 296-62-07371 with an explanation of the information in Appendix C.
- (c) Employee training shall include at least:
 - (i) Methods and observations that may be used to detect the presence or release of EtO in the work area (such as monitoring conducted by the employer, continuous monitoring devices, etc.);
 - (ii) The physical and health hazards of EtO;
 - (iii) The measures employees can take to protect themselves from hazards associated with EtO exposure, including specific procedures the employer has implemented to protect employees from exposure to EtO, such as work-practices, emergency procedures, and personal protective equipment to be used; and
 - (iv) The details of the hazard communication program developed by the employer, including an explanation of the labeling system and how employees can obtain and use the appropriate hazard information.

[Statutory Authority: RCW 49.17.010, .040, .050. 01-11-038 (Order 99-36), § 296-62-07385, filed 05/09/01, effective 09/01/01. Statutory Authority: Chapter 49.17 RCW. 88-23-054 (Order 88-25), § 296-62-07373, filed 11/14/88; 87-24-051 (Order 87-24), § 296-62-07373, filed 11/30/87.]

WAC 296-62-07375 Recordkeeping.

- (1) Objective data for exempted operations.
 - (a) Where the processing, use, or handling of products made from or containing EtO are exempted from other requirements of WAC 296-62-07355 through 296-62-07389 under WAC 296-62-07355, or where objective data have been relied on in lieu of initial monitoring under WAC 296-62-07361 (2)(b), the employer shall establish and maintain an accurate record of objective data reasonably relied upon in support of the exemption.
 - (b) This record shall include at least the following information:

- (i) The product qualifying for exemption;
- (ii) The source of the objective data;
- (iii) The testing protocol, results of testing, and/or analysis of the material for the release of EtO;
- (iv) A description of the operation exempted and how the data support the exemption; and
- (v) Other data relevant to the operations, materials, processing, or employee exposures covered by the exemption.
- (c) The employer shall maintain this record for the duration of the employer's reliance upon such objective data.

(2) **Exposure measurements.**

- (a) The employer shall keep an accurate record of all measurements taken to monitor employee exposure to EtO as prescribed in WAC 296-62-07361.
- (b) This record shall include at least the following information:
 - (i) The date of measurement;
 - (ii) The operation involving exposure to EtO which is being monitored;
 - (iii) Sampling and analytical methods used and evidence of their accuracy;
 - (iv) Number, duration, and results of samples taken;
 - (v) Type of protective devices worn, if any; and
 - (vi) Name, Social Security number and exposure of the employees whose exposures are represented.
- (c) The employer shall maintain this record for at least thirty years, in accordance with WAC 296-62-05207.

(3) Medical surveillance.

- (a) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance by WAC 296-62-07371 (1)(a), in accordance with WAC 296-62-05207.
- (b) The record shall include at least the following information:
 - (i) The name and Social Security number of the employee;
 - (ii) Physicians' written opinions;
 - (iii) Any employee medical complaints related to exposure to EtO; and
 - (iv) A copy of the information provided to the physician as required by WAC 296-62-07371(3).

(c) The employer shall ensure that this record is maintained for the duration of employment plus thirty years, in accordance with WAC 296-62-05207.

(4) Availability.

- (a) The employer, upon written request, shall make all records required to be maintained by WAC 296-62-07355 through 296-62-07389 available to the director for examination and copying.
- (b) The employer, upon request, shall make any exemption and exposure records required by WAC 296-62-07377 (1) and (2) available for examination and copying to affected employees, former employees, designated representatives and the director, in accordance with WAC 296-62-05201 through 296-62-05209 and 296-62-05213 through 296-62-05217.
- (c) The employer, upon request, shall make employee medical records required by subsection (3) of this section available for examination and copying to the subject employee, anyone having the specific written consent of the subject employee, and the director, in accordance with WAC 296-62-052.

(5) Transfer of records.

- (a) The employer shall comply with the requirements concerning transfer of records set forth in WAC 296-62-05215.
- (b) Whenever the employer ceases to do business and there is no successor employer to receive and retain the records for the prescribed period, the employer shall notify the director at least ninety days prior to disposal and transmit them to the director.

[Statutory Authority: Chapter 49.17 RCW. 87-24-051 (Order 87-24), § 296-62-07375, filed 11/30/87.]

WAC 296-62-07377 Observation of monitoring.

- (1) **Employee observation.** The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to EtO conducted in accordance with WAC 296-62-07361.
- (2) **Observation procedures.** When observation of the monitoring of employee exposure to EtO requires entry into an area where the use of protective clothing or equipment is required, the observer shall be provided with and be required to use such clothing and equipment and shall comply with all other applicable safety and health procedures.

[Statutory Authority: Chapter 49.17 RCW. 87-24-051 (Order 87-24), § 296-62-07377, filed 11/30/87.]

WAC 296-62-07381 Appendices. The information contained in the appendices is not intended by itself to create any additional obligations not otherwise imposed or to detract from any existing obligation. [Statutory Authority: Chapter 49.17 RCW. 87-24-051 (Order 87-24), § 296-62-07381, filed 11/30/87.]

WAC 296-62-07383 Appendix A--Substance safety data sheet for ethylene oxide (nonmandatory).

(1) Substance identification

- (a) Substance: Ethylene oxide (C_2H_4O) .
- (b) Synonyms: Dihydrooxirene, dimethylene oxide, EO, 1,2-epoxyethane, EtO, EtO, oxacyclopropane, oxane, oxidoethane, alpha/beta-oxidoethane, oxiran, oxirane.

- (c) Ethylene oxide can be found as a liquid or vapor.
- (d) EtO is used in the manufacture of ethylene glycol, surfactants, ethanolamines, glycol ethers, and other organic chemicals. EtO is also used as a sterilant and fumigant.
- (e) Appearance and odor: Colorless liquid below 10.7°C (51.3°F) or colorless gas with ether-like odor detected at approximately 700 parts EtO per million parts of air (700 ppm).
- (f) Permissible exposure: Exposure may not exceed 1 part EtO per million parts of air averaged over the 8-hour work day.

(2) Health hazard data

- (a) Ethylene oxide can cause bodily harm if you inhale the vapor, if it comes into contact with your eyes or skin, or if you swallow it.
- (b) Effects of overexposure:
 - (i) Ethylene oxide in liquid form can cause eye irritation and injury to the cornea, frostbite, and severe irritation and blistering of the skin upon prolonged or confined contact. Ingestion of EtO can cause gastric irritation and liver injury. Acute effects from inhalation of EtO vapors include respiratory irritation and lung injury, headache, nausea, vomiting, diarrhea, shortness of breath, and cyanosis (blue or purple coloring of skin). Exposure has also been associated with the occurrence of cancer, reproductive effects, mutagenic changes, neurotoxicity, and sensitization.
 - (ii) EtO has been shown to cause cancer in laboratory animals and has been associated with higher incidences of cancer in humans. Adverse reproductive effects and chromosome damage may also occur from EtO exposure.
- (c) Reporting signs and symptoms: You should inform your employer if you develop any signs or symptoms and suspect that they are caused by exposure to EtO.

(3) **Emergency first aid procedures**

- (a) Eye exposure: If EtO gets into your eyes, wash your eyes immediately with large amounts of water, lifting the lower and upper eyelids. Get medical attention immediately. Contact lenses should not be worn when working with this chemical.
- (b) Skin exposure: If EtO gets on your skin, immediately wash the contaminated skin with water. If EtO soaks through your clothing, especially your shoes, remove the clothing immediately and wash the skin with water using an emergency deluge shower. Get medical attention immediately. Thoroughly wash contaminated clothing before reusing. Contaminated leather shoes or other leather articles should not be reused and should be discarded.
- (c) Inhalation: If large amounts of EtO are inhaled, the exposed person must be moved to fresh air at once. If breathing has stopped, perform cardiopulmonary resuscitation. Keep the affected person warm and at rest. Get medical attention immediately.

- (d) Swallowing: When EtO has been swallowed, give the person large quantities of water immediately. After the water has been swallowed, try to get the person to vomit by having him or her touch the back of the throat with his or her finger. Do not make an unconscious person vomit. Get medical attention immediately.
- (e) Rescue: Move the affected person from the hazardous exposure. If the exposed person has been overcome, attempt rescue only after notifying at least one other person of the emergency and putting into effect established emergency procedures. Do not become a casualty yourself. Understand your emergency rescue procedures and know the location of the emergency equipment before the need arises.

(4) Respirators and protective clothing

(a) Respirators:

- (i) You may be required to wear a respirator for nonroutine activities, in emergencies, while your employer is in the process of reducing EtO exposure through engineering controls, and in areas where engineering controls are not feasible. Only air supplied positive-pressure, full-facepiece respirators are approved for protection against EtO. If air-purifying respirators are worn in the future, they must have a label issued by the National Institute for Occupational Safety and Health (NIOSH) under the provisions of 42 CFR part 84 stating that the respirators have been certified for use with ethylene oxide. For effective protection, respirators must fit your face and head snugly. Respirators must not be loosened or removed in work situations where their use is required.
- (ii) EtO does not have a detectable odor except at levels well above the permissible exposure limits. If you can smell EtO while wearing a respirator, proceed immediately to fresh air. If you experience difficulty breathing while wearing a respirator, tell your employer.

(b) Protective clothing:

- (i) You may be required to wear impermeable clothing, gloves, a face shield, or other appropriate protective clothing to prevent skin contact with liquid EtO or EtO-containing solutions. Where protective clothing is required, your employer must provide clean garments to you as necessary to assure that the clothing protects you adequately.
- (ii) Replace or repair protective clothing that has become torn or otherwise damaged.
- (iii) EtO must never be allowed to remain on the skin. Clothing and shoes which are not impermeable to EtO should not be allowed to become contaminated with EtO, and if they do, the clothing should be promptly removed and decontaminated. Contaminated leather shoes should be discarded. Once EtO penetrates shoes or other leather articles, they should not be worn again.
- (c) Eye protection: You must wear splashproof safety goggles in areas where liquid EtO or EtO-containing solutions may contact your eyes. In addition, contact lenses should not be worn in areas where eye contact with EtO can occur.

(5) Precautions for safe use, handling, and storage

- (a) EtO is a flammable liquid, and its vapors can easily form explosive mixtures in air.
- (b) EtO must be stored in tightly closed containers in a cool, well-ventilated area, away from heat, sparks, flames, strong oxidizers, alkalines, and acids, strong bases, acetylide forming metals such as copper, silver, mercury and their alloys.
- (c) Sources of ignition such as smoking material, open flames and some electrical devices are prohibited wherever EtO is handled, used, or stored in a manner that could create a potential fire or explosion hazard.
- (d) You should use nonsparking tools when opening or closing metal containers of EtO, and containers must be bonded and grounded in the rare instances in which liquid EtO is poured or transferred.
- (e) Impermeable clothing wet with liquid EtO or EtO-containing solutions may be easily ignited. If you are wearing impermeable clothing and are splashed with liquid EtO or EtO-containing solution, you should immediately remove the clothing while under an emergency deluge shower.
- (f) If your skin comes into contact with liquid EtO or EtO-containing solutions, you should immediately remove the EtO using an emergency deluge shower.
- (g) You should not keep food, beverages, or smoking materials in regulated areas where employee exposures are above the permissible exposure limits.
- (h) Fire extinguishers and emergency deluge showers for quick drenching should be readily available, and you should know where they are and how to operate them.
- (i) Ask your supervisor where EtO is used in your work area and for any additional plant safety and health rules.

(6) Access to information.

- (a) Each year, your employer is required to inform you of the information contained in this standard and appendices for EtO. In addition, your employer must instruct you in the proper work-practices for using EtO emergency procedures, and the correct use of protective equipment.
- (b) Your employer is required to determine whether you are being exposed to EtO. You or your representative has the right to observe employee measurements and to record the results obtained. Your employer is required to inform you of your exposure. If your employer determines that you are being overexposed, he or she is required to inform you of the actions which are being taken to reduce your exposure to within permissible exposure limits.
- (c) Your employer is required to keep records of your exposures and medical examinations. These exposure records must be kept by the employer for at least thirty years. Medical records must be kept for the period of your employment plus thirty years.
- (d) Your employer is required to release your exposure and medical records to your physician or designated representative upon your written request.

- (7) Sterilant use of EtO in hospitals and health care facilities.
 - (a) This section of Appendix A, for informational purposes, sets forth EPA's recommendations for modifications in workplace design and practice in hospitals and health care facilities for which the Environmental Protection Agency has registered EtO for uses as a sterilant or fumigant under the Federal Insecticide, Fungicide, and Rodenticide Act, 7 U.S.C. 136 et seq. These new recommendations, published in the Federal Register by EPA at 49 FR 15268, as modified in today's Register, are intended to help reduce the exposure of hospital and health care workers to EtO to 1 ppm. EPA's recommended workplace design and workplace practice are as follows:
 - (i) Workplace design
 - (A) Installation of gas line hand valves. Hand valves must be installed on the gas supply line at the connection to the supply cylinders to minimize leakage during cylinder change.
 - (B) Installation of capture boxes. Sterilizer operations result in a gas/water discharge at the completion of the process. This discharge is routinely piped to a floor drain which is generally located in an equipment or an adjacent room. When the floor drain is not in the same room as the sterilizer and workers are not normally present, all that is necessary is that the room be well ventilated.
 - (C) The installation of a "capture box" will be required for those work place layouts where the floor drain is located in the same room as the sterilizer or in a room where workers are normally present. A "capture box" is a piece of equipment that totally encloses the floor drain where the discharge from the sterilizer is pumped. The "capture box" is to be vented directly to a nonrecirculating or dedicated ventilation system. Sufficient air intake should be allowed at the bottom of the box to handle the volume of air that is ventilated from the top of the box. The "capture box" can be made of metal, plastic, wood or other equivalent material. The box is intended to reduce levels of EtO discharged into the work room atmosphere. The use of a "capture box" is not required if:

 (I) The vacuum pump discharge floor drain is located in a well ventilated equipment or other room where workers are not normally present or (II) the water sealed vacuum pump discharges directly to a closed sealed sewer line (check local plumbing codes).
 - (D) If it is impractical to install a vented "capture box" and a well ventilated equipment or other room is not feasible, a box that can be sealed over the floor drain may be used if: (I) The floor drain is located in a room where workers are not normally present and EtO cannot leak into an occupied area, and (II) the sterilizer in use is less than 12 cubic feet in capacity (check local plumbing codes).
 - (ii) Ventilation of aeration units.
 - (A) Existing aeration units. Existing units must be vented to a nonrecirculating or dedicated system or vented to an equipment or other room where workers are not normally present and which is well ventilated. Aerator units must be positioned as close as possible to the sterilizer to minimize the exposure from the off-gassing of sterilized items.

- (B) Installation of new aerator units (where none exist). New aerator units must be vented as described above for existing aerators. Aerators must be in place by July 1, 1986.
- (iii) Ventilation during cylinder change. Workers may be exposed to short but relatively high levels of EtO during the change of gas cylinders. To reduce exposure from this route, users must select one of three alternatives designed to draw off gas that may be released when the line from the sterilizer to the cylinder is disconnected:
 - (A) Location of cylinders in a well ventilated equipment room or other room where workers are not normally present.
 - (B) Installation of a flexible hose (at least four inches in diameter) to a nonrecirculating or dedicated ventilation system and located in the area of cylinder change in such a way that the hose can be positioned at the point where the sterilizer gas line is disconnected from the cylinder.
 - (C) Installation of a hood that is part of a nonrecirculating or dedicated system and positioned no more than one foot above the point where the change of cylinders takes place.
- (iv) Ventilation of sterilizer door area. One of the major sources of exposure to EtO occurs when the sterilizer door is opened following the completion of the sterilization process. In order to reduce this avenue of exposure, a hood or metal canopy closed on each end must be installed over the sterilizer door. The hood or metal canopy must be connected to a nonrecirculating or dedicated ventilation system or one that exhausts gases to a well ventilated equipment or other room where workers are not normally present. A hood or canopy over the sterilizer door is required for use even with those sterilizers that have a purge cycle and must be in place by July 1, 1986.
- (v) Ventilation of sterilizer relief valve. Sterilizers are typically equipped with a safety relief device to release gas in case of increased pressure in the sterilizer. Generally, such relief devices are used on pressure vessels. Although these pressure relief devices are rarely opened for hospital and health care sterilizers, it is suggested that they be designed to exhaust vapor from the sterilizer by one of the following methods:
 - (A) Through a pipe connected to the outlet of the relief valve ventilated directly outdoors at a point high enough to be away from passers by, and not near any windows that open, or near any air conditioning or ventilation air intakes.
 - (B) Through a connection to an existing or new nonrecirculating or dedicated ventilation system.
 - (C) Through a connection to a well ventilated equipment or other room where workers are not normally present.
- (vi) Ventilation systems. Each hospital and health care facility affected by this notice that uses EtO for the sterilization of equipment and supplies must have a ventilation system which enables compliance with the requirements of (a)(i)(B) through (v) of this subsection in the manner described in these sections and within the timeframes allowed. Thus, each affected hospital and health care facility must have or install a

Part G Carcinogens (Specific)

nonrecirculating or dedicated ventilation equipment or other room where workers are not normally present in which to vent EtO.

(vii) Installation of alarm systems. An audible and visual indicator alarm system must be installed to alert personnel of ventilation system failures, i.e., when the ventilation fan motor is not working.

(b) Workplace practices

- (i) All the workplace practices discussed in this unit must be permanently posted near the door of each sterilizer prior to use by any operator.
- (ii) Changing of supply line filters.

Filters in the sterilizer liquid line must be changed when necessary, by the following procedure:

- (A) Close the cylinder valve and the hose valve.
- (B) Disconnect the cylinder hose (piping) from the cylinder.
- (C) Open the hose valve and bleed slowly into a proper ventilating system at or near the in-use supply cylinders.
- (D) Vacate the area until the line is empty.
- (E) Change the filter.
- (F) Reconnect the lines and reverse the valve position.
- (G) Check hoses, filters, and valves for leaks with a fluorocarbon leak detector (for those sterilizers using the eighty-eight percent chlorofluorocarbon, twelve percent ethylene oxide mixture (12/88)).
- (iii) Restricted access area.
 - (A) Areas involving use of EtO must be designated as restricted access areas. They must be identified with signs or floor marks near the sterilizer door, aerator, vacuum pump floor drain discharge, and in-use cylinder storage.
 - (B) All personnel must be excluded from the restricted area when certain operations are in progress, such as discharging a vacuum pump, emptying a sterilizer liquid line, or venting a nonpurge sterilizer with the door ajar or other operations where EtO might be released directly into the face of workers.
- (iv) Door opening procedures.
 - (A) Sterilizers with purge cycles. A load treated in a sterilizer equipped with a purge cycle should be removed immediately upon completion of the cycle (provided no time is lost opening the door after cycle is completed). If this is not done, the purge cycle should be repeated before opening door.
 - (B) Sterilizers without purge cycles. For a load treated in a sterilizer not equipped with a purge cycle, the sterilizer door must be ajar six inches for fifteen minutes, and then fully opened for at least another fifteen minutes before removing the treated load. The length of time of the second period should be established by

peak monitoring for one hour after the two fifteen-minute periods suggested. If the level is above 10 ppm time-weighted average for eight hours, more time should be added to the second waiting period (door wide open). However, in no case may the second period be shortened to less than fifteen minutes.

- (v) Chamber unloading procedures.
 - (A) Procedures for unloading the chamber must include the use of baskets or rolling carts, or baskets and rolling tables to transfer treated loads quickly, thus avoiding excessive contact with treated articles, and reducing the duration of exposures.
 - (B) If rolling carts are used, they should be pulled not pushed by the sterilizer operators to avoid offgassing exposure.
- (vi) Maintenance. A written log should be instituted and maintained documenting the date of each leak detection and any maintenance procedures undertaken. This is a suggested use practice and is not required.
- (vii) Leak detection. Sterilizer door gaskets, cylinder and vacuum piping, hoses, filters, and valves must be checked for leaks under full pressure with a Fluorocarbon leak detector (for 12/88 systems only) every two weeks by maintenance personnel. Also, the cylinder piping connections must be checked after changing cylinders. Particular attention in leak detection should be given to the automatic solenoid valves that control the flow of EtO to the sterilizer. Specifically, a check should be made at the EtO gasline entrance port to the sterilizer, while the sterilizer door is open and the solenoid valves are in a closed position.
- (viii) Maintenance procedures. Sterilizer/aerator door gaskets, valves, and fittings must be replaced when necessary as determined by maintenance personnel in their biweekly checks; in addition, visual inspection of the door gaskets for cracks, debris, and other foreign substances should be conducted daily by the operator.

[Statutory Authority: RCW 49.17.010, .040, .050. 99-10 (Order 98-10) § 296-62-07383, filed 05/04/99, effective 09/01/99.] Statutory Authority: Chapter 49.17 RCW. 88-14-108 (Order 88-11), § 296-62-07383, filed 7/6/88; 87-24-051 (Order 87-24), § 296-62-07383, filed 11/30/87.]

WAC 296-62-07385 Appendix B--Substance technical guidelines for ethylene oxide (nonmandatory).

- (1) Physical and chemical data:
 - (a) Substance identification:
 - (i) Synonyms: Dihydrooxirene, dimethylene oxide, EO, 1,2-epoxyethane, EtO, EtO, oxacyclopropane, oxane, oxidoethane, alpha/beta-oxidoethane, oxiran, oxirane.
 - (ii) Formula: (C_2H_4O) .
 - (iii) Molecular weight: 44.06.
 - (b) Physical data:
 - (i) Boiling point (760 mm Hg): 10.70°C (51.3°F);

(ii) Specific gravity (water = 1): 0.87 (at 20° C or 68° F);

- (iii) Vapor density (air = 1): 1.49;
- (iv) Vapor pressure (at 20°C): 1,095 mm Hg;
- (v) Solubility in water: Complete;
- (vi) Appearance and odor: Colorless liquid; gas at temperature above 10.7°F or 51.3°C with ether-like odor above 700 ppm.

(2) Fire, explosion, and reactivity hazard data:

- (a) Fire:
 - (i) Flash point; Less than 0°F (open cup);
 - (ii) Stability: Decomposes violently at temperatures above 800°F;
 - (iii) Flammable limits in air, percent by volume: Lower: 3, Upper: 100;
 - (iv) Extinguishing media: Carbon dioxide for small fires, polymer or alcohol foams for large fires;
 - Special fire fighting procedures: Dilution of ethylene oxide with 23 volumes of water renders it nonflammable;
 - (vi) Unusual fire and explosion hazards: Vapors of EtO will burn without the presence of air or other oxidizers. EtO vapors are heavier than air and may travel along the ground and be ignited by open flames or sparks at locations remote from the site at which EtO is being used.
 - (vii) For purposes of compliance with the requirements of WAC 296-24-330, EtO is classified as a flammable gas. For example, 7,500 ppm, approximately one-fourth of the lower flammable limit, would be considered to pose a potential fire and explosion hazard.
 - (viii) For purposes of compliance with WAC 296-24-585, EtO is classified as a Class B fire hazard.
 - (ix) For purpose of compliance with chapter 296-24 WAC Part L, and WAC 296-800-280, locations classified as hazardous due to the presence of EtO shall be Class I.
- (b) Reactivity:
 - (i) Conditions contributing to instability: EtO will polymerize violently if contaminated with aqueous alkalies, amines, mineral acids, metal chlorides, or metal oxides. Violent decomposition will also occur at temperatures above 800°F;
 - (ii) Incompatibilities: Alkalines and acids;
 - (iii) Hazardous decomposition products: Carbon monoxide and carbon dioxide.

(3) Spill, leak, and disposal procedures:

(a) If EtO is spilled or leaked, the following steps should be taken:

- (i) Remove all ignition sources.
- (ii) The area should be evacuated at once and re-entered only after the area has been thoroughly ventilated and washed down with water.
- (b) Persons not wearing appropriate protective equipment should be restricted from areas of spills or leaks until cleanup has been completed.
- (c) Waste disposal method: Waste material should be disposed of in a manner that is not hazardous to employees or to the general population. In selecting the method of waste disposal, applicable local, state, and federal regulations should be consulted.

(4) Monitoring and measurement procedures:

- (a) Exposure above the permissible exposure limit:
 - (i) Eight-hour exposure evaluation: Measurements taken for the purpose of determining employee exposure under this section are best taken with consecutive samples covering the full shift. Air samples should be taken in the employee's breathing zone (air that would most nearly represent that inhaled by the employee.)
 - (ii) Monitoring techniques: The sampling and analysis under this section may be performed by collection of the EtO vapor on charcoal adsorption tubes or other composition adsorption tubes, with subsequent chemical analysis. Sampling and analysis may also be performed by instruments such as real time continuous monitoring systems, portable direct reading instruments, or passive dosimeters as long as measurements taken using these methods accurately evaluate the concentration of EtO in employees' breathing zones.
 - (iii) Appendix D describes the validated method of sampling and analysis which has been tested by OSHA for use with EtO. Other available methods are also described in Appendix D. The employer has the obligation of selecting a monitoring method which meets the accuracy and precision requirements of the standard under his/her unique field conditions. The standard requires that the method of monitoring should be accurate, to a 95 percent confidence level, to plus or minus 25 percent for concentrations of EtO at 1 ppm, and to plus or minus 35 percent for concentrations at 0.5 ppm. In addition to the method described in Appendix D, there are numerous other methods available for monitoring for EtO in the workplace. Details on these other methods have been submitted by various companies to the rulemaking record, and are available at the OSHA Docket Office.
- (b) Since many of the duties relating to employee exposure are dependent on the results of measurement procedures, employers should assure that the evaluation of employee exposures is performed by a technically qualified person.

(5) **Protective clothing and equipment:**

(a) Employees should be provided with and be required to wear appropriate protective clothing wherever there is significant potential for skin contact with liquid EtO or EtO-containing solutions. Protective clothing shall include impermeable coveralls or similar full-body work clothing, gloves, and head coverings, as appropriate to protect areas of the body which may come in contact with liquid EtO or EtO-containing solutions.

- (b) Employers should ascertain that the protective garments are impermeable to EtO. Permeable clothing, including items made of rubber, and leather shoes should not be allowed to become contaminated with liquid EtO. If permeable clothing does become contaminated, it should be immediately removed, while the employer is under an emergency deluge shower. If leather footwear or other leather garments become wet from EtO they should be discarded and not be worn again, because leather absorbs EtO and holds it against the skin.
- (c) Any protective clothing that has been damaged or is otherwise found to be defective should be repaired or replaced. Clean protective clothing should be provided to the employee as necessary to assure employee protection. Whenever impermeable clothing becomes wet with liquid EtO, it should be washed down with water before being removed by the employee. Employees are also required to wear splashproof safety goggles where there is any possibility of EtO contacting the eyes.

(6) **Miscellaneous precautions:**

- (a) Store EtO in tightly closed containers in a cool, well-ventilated area and take all necessary precautions to avoid any explosion hazard.
- (b) Nonsparking tools must be used to open and close metal containers. These containers must be effectively grounded and bonded.
- (c) Do not incinerate EtO cartridges, tanks or other containers.
- (d) Employers should advise employees of all areas and operations where exposure to EtO occurs.

(7) **Common operations:**

Common operations in which exposure to EtO is likely to occur include the following: (a) Manufacture of EtO, (b) surfactants, (c) ethanolamines, (d) glycol ethers, (e) specialty chemicals, and (f) use as a sterilant in the hospital, health product and spice industries.

[Statutory Authority: RCW 49.17.010, .040, .050. 01-11-038 (Order 99-36), § 296-62-07385, filed 05/09/01, effective 09/01/01. Statutory Authority: Chapter 49.17 RCW. 91-24-017 (Order 91-07), § 296-62-07385, filed 11/22/91, effective 12/24/91; 88-14-108 (Order 88-11), § 296-62-07385, filed 7/6/88; 87-24-051 (Order 87-24), § 296-62-07385, filed 11/30/87.]

WAC 296-62-07387 Appendix C--Medical surveillance guidelines for ethylene oxide (nonmandatory).

(1) **Route of entry:** Inhalation.

(2) **Toxicology:**

- (a) Clinical evidence of adverse effects associated with the exposure to EtO is present in the form of increased incidence of cancer in laboratory animals (leukemia, stomach, brain), mutation in offspring in animals, and resorptions and spontaneous abortions in animals and human populations respectively. Findings in humans and experimental animals exposed to airborne concentrations of EtO also indicate damage to the genetic material (DNA). These include hemoglobin alkylation, unscheduled DNA synthesis, sister chromatid exchange chromosomal aberration, and functional sperm abnormalities.
- (b) Ethylene oxide in liquid form can cause eye irritation and injury to the cornea, frostbite, severe irritation, and blistering of the skin upon prolonged or confined contact. Ingestion of EtO can cause gastric irritation and liver injury. Other effects from inhalation of EtO vapors include

Part G Carcinogens (Specific)

respiratory irritation and lung injury, headache, nausea, vomiting, diarrhea, dyspnea and cyanosis.

(3) Signs and symptoms of acute overexposure:

- (a) The early effects of acute overexposure to EtO are nausea and vomiting, headache, and irritation of the eyes and respiratory passages. The patient may notice a "peculiar taste" in the mouth. Delayed effects can include pulmonary edema, drowsiness, weakness, and incoordination. Studies suggest that blood cell changes, an increase in chromosomal aberrations, and spontaneous abortion may also be casually related to acute overexposure to EtO.
- (b) Skin contact with liquid or gaseous EtO causes characteristic burns and possible even an allergic-type sensitization. The edema and erythema occurring from skin contact with EtO progress to vesiculation with a tendency to coalesce into blebs with desquamation. Healing occurs within three weeks, but there may be a residual brown pigmentation. A 40-80% solution is extremely dangerous, causing extensive blistering after only brief contact. Pure liquid EtO causes frostbite because of rapid evaporation. In contrast, the eye is relatively insensitive to EtO, but there may be some irritation of the cornea.
- (c) Most reported acute effects of occupational exposure to EtO are due to contact with EtO in liquid phase. The liquid readily penetrates rubber and leather, and will produce blistering if clothing or footwear contaminated with EtO are not removed.

(4) Surveillance and preventive considerations:

- (a) As noted above, exposure to EtO has been linked to an increased risk of cancer and reproductive effects including decreased male fertility, fetotoxicity, and spontaneous abortion. EtO workers are more likely to have chromosomal damage than similar groups not exposed to EtO. At the present, limited studies of chronic effects in humans resulting from exposure to EtO suggest a causal association with leukemia. Animal studies indicate leukemia and cancers at other sites (brain, stomach) as well. The physician should be aware of the findings of these studies in evaluating the health of employees exposed to EtO.
- (b) Adequate screening tests to determine an employee's potential for developing serious chronic diseases, such as cancer, from exposure to EtO do not presently exist. Laboratory tests may, however, give evidence to suggest that an employee is potentially overexposed to EtO. It is important for the physician to become familiar with the operating conditions in which exposure to EtO is likely to occur. The physician also must become familiar with the signs and symptoms that indicate a worker is receiving otherwise unrecognized and unacceptable exposure to EtO. These elements are especially important in evaluating the medical and work histories and in conducting the physical exam. When an unacceptable exposure in an active employee is identified by the physician, measures taken by the employer to lower exposure should also lower the risk of serious long-term consequences.
- (c) The employer is required to institute a medical surveillance program for all employees who are or will be exposed to EtO at or above the action level (0.5 ppm) for at least 30 days per year, without regard to respirator use. All examinations and procedures must be performed by or under the supervision of a licensed physician at a reasonable time and place for the employee and at no cost to the employee.
- (d) Although broad latitude in prescribing specific tests to be included in the medical surveillance program is extended to the examining physician, WISHA requires inclusion of the following elements in the routine examination:
 - (i) Medical and work histories with special emphasis directed to symptoms related to the pulmonary, hematologic, neurologic, and reproductive systems and to the eyes and skin.

- (ii) Physical examination with particular emphasis given to the pulmonary, hematologic, neurologic, and reproductive systems and to the eyes and skin.
- (iii) Complete blood count to include at least a white cell count (including differential cell count), red cell count, hematocrit, and hemoglobin.
- (iv) Any laboratory or other test which the examining physician deems necessary by sound medical practice.
- (e) If requested by the employee, the medical examinations shall include pregnancy testing or laboratory evaluation of fertility as deemed appropriate by the physician.
- (f) In certain cases, to provide sound medical advice to the employer and the employee, the physician must evaluate situations not directly related to EtO. For example, employees with skin diseases may be unable to tolerate wearing protective clothing. In addition those with chronic respiratory diseases may not tolerate the wearing of negative pressure (air purifying) respirators. Additional tests and procedures that will help the physician determine which employees are medically unable to wear such respirators should include: An evaluation of cardiovascular function, a baseline chest x-ray to be repeated at five year intervals, and a pulmonary function test to be repeated every three years. The pulmonary function test should include measurement of the employee's forced vital capacity (FVC), forced expiratory volume at one second (FEV₁), as well as calculation of the ratios of FEV₁ to FVC, and measured FVC and measured FEV₁ to expected values corrected for variation due to age, sex, race, and height.
- (g) The employer is required to make the prescribed tests available at least annually to employees who are or will be exposed at or above the action level, for 30 or more days per year; more often than specified if recommended by the examining physician; and upon the employee's termination of employment or reassignment to another work area. While little is known about the long-term consequences of high short-term exposures, it appears prudent to monitor such affected employees closely in light of existing health data. The employer shall provide physician recommended examinations to any employee exposed to EtO in emergency conditions. Likewise, the employer shall make available medical consultations including physician recommended exams to employees who believe they are suffering signs or symptoms of exposure to EtO.
- (h) The employer is required to provide the physician with the following information: A copy of this standard and its appendices; a description of the affected employee's duties as they relate to the employee exposure level; and information from the employee's previous medical examinations which is not readily available to the examining physician. Making this information available to the physician will aid in the evaluation of the employee's health in relation to assigned duties and fitness to wear personal protective equipment, when required.
- (i) The employer is required to obtain a written opinion from the examining physician containing the results of the medical examinations; the physician's opinion as to whether the employee has any detected medical conditions which would place the employee at increased risk of material impairment of his or her health from exposure to EtO; any recommended restrictions upon the employee's exposure to EtO, or upon the use of protective clothing or equipment such as respirators; and a statement that the employee has been informed by the physician of the results of the medical examination and of any medical conditions which require further explanation or treatment. This written opinion must not reveal specific findings or diagnoses unrelated to occupational exposure to EtO, and a copy of the opinion must be provided to the affected employee.

(j) The purpose in requiring the examining physician to supply the employer with a written opinion is to provide the employer with a medical basis to aid in the determination of initial placement of employees and to assess the employee's ability to use protective clothing and equipment.

[Statutory Authority: Chapter 49.17 RCW. 88-14-108 (Order 88-11), § 296-62-07387, filed 7/6/88; 87-24-051 (Order 87-24), § 296-62-07387, filed 11/30/87.]

WAC 296-62-07389 Appendix D--Sampling and analytical methods for ethylene oxide (nonmandatory).

- (1) A number of methods are available for monitoring employee exposures to EtO. Most of these involve the use of charcoal tubes and sampling pumps, followed by analysis of the samples by gas chromatograph. The essential differences between the charcoal tube methods include, among others, the use of different desorbing solvents, the use of different lots of charcoal, and the use of different equipment for analysis of the samples. Besides charcoal, methods using passive dosimeters, gas sampling bags, impingers, and detector tubes have been utilized for determination of EtO exposure. In addition, there are several commercially available portable gas analyzers and monitoring units. This appendix contains details for the method which has been tested at the OSHA Analytical Laboratory in Salt Lake City. Inclusion of this method in the appendix does not mean that this method is the only one which will be satisfactory. Copies of descriptions of other methods available are available in the rulemaking record, and may be obtained from the OSHA Docket Office. These include the Union Carbide, Dow Chemical, 3M, and DuPont methods, as well as NIOSH Method S-286. These methods are briefly described at the end of this appendix.
- (2) Employers who note problems with sample breakthrough using the OSHA or other charcoal methods should try larger charcoal tubes. Tubes of larger capacity are available. In addition, lower flow rates and shorter sampling times should be beneficial in minimizing breakthrough problems. Whatever method the employer chooses, he/she must assure himself/herself of the method's accuracy and precision under the unique conditions present in his workplace.

(3) Ethylene oxide:

- (a) Method No.: 30.
- (b) Matrix: Air.
 - (i) Target concentration: 1.0 ppm (1.8 mg/m³)
 - (ii) Procedure: Samples are collected on two charcoal tubes in series and desorbed with 1% CS2 in benzene. The samples are derivatized with HBr and treated with sodium carbonate. Analysis is done by gas chromatography with an electron capture detector.
 - (iii) Recommended air volume and sampling rate: 1 liter and 0.05 Lpm.
 - (iv) Detection limit of the overall procedure: 13.3 ppb (0.024 mg/m³) (based on 1.0 liter air sample).
 - (v) Reliable quantitation limit: 52.2 ppb (0.094 mg/m³) (based on 1.0 liter air sample).
 - (vi) Standard error of estimate: 6.59% (see backup section 4.6).
 - (vii) Special requirements: Samples must be analyzed within 15 days of sampling date.
 - (viii) Status of method: The sampling and analytical method has been subject to the established evaluation procedures of the Organic Method Evaluations Branch.

(c) Date: August 1981.

(d) Chemist: Wayne D. Potter

- (e) Organic Solvents Branch, OSHA Analytical Laboratory, Salt Lake City, Utah
- (f) General discussion:
 - (i) Background.
 - (A) History of procedure.
 - (I) Ethylene oxide samples analyzed at the OSHA laboratory have normally been collected on activated charcoal and desorbed with carbon disulfide. The analysis is performed with a gas chromatograph equipped with a FID (flame ionization detector) as described in NIOSH Method S286 (Ref. (3)(j)(i)). This method is based on a PEL of 50 ppm and has a detection limit of about 1 ppm.
 - (II) Recent studies have prompted the need for a method to analyze and detect ethylene oxide at very low concentrations.
 - (III) Several attempts were made to form an ultraviolet (UV) sensitive derivative with ethylene oxide for analysis with HPLC. Among those tested that gave no detectable product were: p-anisidine, methylimidazole, aniline, and 2,3,6-trichlorobenzoic acid. Each was tested with catalysts such as triethylamine, aluminum chloride, methylene chloride and sulfuric acid but no detectable derivative was produced.
 - (IV) The next derivatization attempt was to react ethylene oxide with HBr to form 2-bromoethanol. This reaction was successful. An ECD (electron capture detector) gave a very good response for 2-bromoethanol due to the presence of bromine. The use of carbon disulfide as the desorbing solvent gave too large a response and masked the 2-bromoethanol. Several other solvents were tested for both their response on the ECD and their ability to desorb ethylene oxide from the charcoal. Among those tested were toluene, xylene, ethyl benzene, hexane, cyclohexane and benzene. Benzene was the only solvent tested that gave a suitable response on the ECD and a high desorption. It was found that the desorption efficiency was improved by using 1% CS2 with the benzene. The carbon disulfide did not significantly improve the recovery with the other solvents. SKC Lot 120 was used in all tests done with activated charcoal.
 - (B) Physical properties (Ref. (3)(j)(ii) (iv)):
 - (I) Synonyms: Oxirane; dimethylene oxide; 1,2-epoxy-ethane; oxane; C_2H_4O ; EtO;
 - (II) Molecular weight: 44.06;
 - (III) Boiling point: 10.7° C (51.3°);

- (IV) Melting point:--111°C;
- (V) Description: Colorless, flammable gas;
- (VI) Vapor pressure: 1095 mm. at 20°C;
- (VII) Odor: Ether-like odor;
- (VIII) Lower explosive limits: 3.0% (by volume);
- (IX) Flash point (TOC): Below 0°F;
- (X) Molecular structure: CH2--CH2;
- (ii) Limit defining parameters:
 - (A) Detection limit of the analytical procedure. The detection limit of the analytical procedure is 12.0 picograms of ethylene oxide per injection. This is the amount of analyte which will give a peak whose height is five times the height of the baseline noise. (See backup data section (3)(i)(i).)
 - (B) Detection limit of the overall procedure.
 - (I) The detection limit of the overall procedure is 24.0 ng of ethylene oxide per sample.
 - (II) This is the amount of analyte spiked on the sampling device which allows recovery of an amount of analyte equivalent to the detection limit of the analytical procedure. (See backup data section (3)(i)(ii).)
 - (C) Reliable quantitation limit.
 - (I) The reliable quantitation limit is 94.0 nanograms of ethylene oxide per sample. This is the smallest amount of analyte which can be quantitated within the requirements of 75% recovery and 95% confidence limits. (See backup data section (3)(i)(ii).)
 - (II) It must be recognized that the reliable quantitation limit and detection limits reported in the method are based upon optimization of the instrument for the smallest possible amount of analyte. When the target concentration of an analyte is exceptionally higher than these limits, they may not be attainable at the routine operating parameters. In this case, the limits reported on analysis reports will be based on the operating parameters used during the analysis of the samples.
 - (D) Sensitivity.
 - (I) The sensitivity of the analytical procedure over a concentration range representing 0.5 to 2 times the target concentration based on the recommended air volume is 34105 area units per ug/mL. The sensitivity is determined by the slope of the calibration curve (see backup data section (3)(i)(iii)).

- (II) The sensitivity will vary somewhat with the particular instrument used in the analysis.
- (E) Recovery. The recovery of analyte from the collection medium must be 75% or greater. The average recovery from spiked samples over the range of 0.5 to 2 times the target concentration is 88.0% (see backup section (3)(i)(iv)). At lower concentrations the recovery appears to be nonlinear.
- (F) Precision (analytical method only). The pooled coefficient of variation obtained from replicate determination of analytical standards at 0.5X, 1X and 2X the target concentration is 0.036 (see backup data section (3)(i)(v)).
- (G) Precision (overall procedure).
 - (I) The overall procedure must provide results at the target concentration that are 25% or better at the 95% confidence level. The precision at the 95% confidence level for the 15 day storage test is plus or minus 12.9% (see backup data section(3)(i)(vi)).
 - (II) This includes an additional plus or minus 5% for sampling error.
- (iii) Advantages.
 - (A) The sampling procedure is convenient.
 - (B) The analytical procedure is very sensitive and reproducible.
 - (C) Reanalysis of samples is possible.
 - (D) Samples are stable for at least 15 days at room temperature.
 - (E) Interferences are reduced by the longer GC retention time of the new derivative.
- (iv) Disadvantages.
 - (A) Two tubes in series must be used because of possible breakthrough and migration.
 - (B) The precision of the sampling rate may be limited by the reproducibility of the pressure drop across the tubes. The pumps are usually calibrated for one tube only.
 - (C) The use of benzene as the desorption solvent increases the hazards of analysis because of the potential carcinogenic effects of benzene.
 - (D) After repeated injections there can be a buildup of residue formed on the electron capture detector which decreases sensitivity.
 - (E) Recovery from the charcoal tubes appears to be nonlinear at low concentrations.
- (g) Sampling procedure.
 - (i) Apparatus.

- (A) A calibrated personal sampling pump whose flow can be determined within plus or minus 5% of the recommended flow.
- (B) SKC Lot 120 Charcoal tubes: Glass tube with both ends flame sealed, 7 cm long with a 6 mm O.D. and a 4-mm I.D., containing 2 sections of coconut shell charcoal separated by a 2-mm portion of urethane foam. The adsorbing section contains 100 mg of charcoal, the backup section 50 mg.

A 3-mm portion of urethane foam is placed between the outlet end of the tube and the backup section. A plug of silylated glass wool is placed in front of the adsorbing section.

- (ii) Reagents. None required.
- (iii) Sampling technique.
 - (A) Immediately before sampling, break the ends of the charcoal tubes. All tubes must be from the same lot.
 - (B) Connect two tubes in series to the sampling pump with a short section of flexible tubing. A minimum amount of tubing is used to connect the two sampling tubes together. The tube closer to the pump is used as a backup. This tube should be identified as the backup tube.
 - (C) The tubes should be placed in a vertical position during sampling to minimize channeling.
 - (D) Air being sampled should not pass through any hose or tubing before entering the charcoal tubes.
 - (E) Seal the charcoal tubes with plastic caps immediately after sampling. Also, seal each sample with OSHA seals lengthwise.
 - (F) With each batch of samples, submit at least one blank tube from the same lot used for samples. This tube should be subjected to exactly the same handling as the samples (break, seal, transport) except that no air is drawn through it.
 - (G) Transport the samples (and corresponding paperwork) to the lab for analysis.
 - (H) If bulk samples are submitted for analysis, they should be transported in glass containers with Teflon-lined caps. These samples must be mailed separately from the container used for the charcoal tubes.
- (iv) Breakthrough.

The breakthrough (5% breakthrough) volume for a 3.0 mg/m^3 ethylene oxide sample stream at approximately 85% relative humidity, 22°C and 633 mm is 2.6 liters sampled at 0.05 liters per minute. This is equivalent to $7.8 \, \mu \text{g}$ of ethylene oxide. Upon saturation of the tube it appeared that the water may be displacing ethylene oxide during sampling.

(v) Desorption efficiency.

- (A) The desorption efficiency, from liquid injection onto charcoal tubes, averaged 88.0% from 0.5 to 2.0 x the target concentration for a 1.0 liter air sample. At lower ranges it appears that the desorption efficiency is nonlinear (see backup data section (3)(i)(ii)).
- (B) The desorption efficiency may vary from one laboratory to another and also from one lot of charcoal to another. Thus, it is necessary to determine the desorption efficiency for a particular lot of charcoal.
- (vi) Recommended air volume and sampling rate.
 - (A) The recommended air volume is 1.0 liter.
 - (B) The recommended maximum sampling rate is 0.05 Lpm.
- (vii) Interferences.
 - (A) Ethylene glycol and Freon 12 at target concentration levels did not interfere with the collection of ethylene oxide.
 - (B) Suspected interferences should be listed on the sample data sheets.
 - (C) The relative humidity may affect the sampling procedure.
- (viii) Safety precautions.
 - (A) Attach the sampling equipment to the employee so that it does not interfere with work performance.
 - (B) Wear safety glasses when breaking the ends of the sampling tubes.
 - (C) If possible, place the sampling tubes in a holder so the sharp end is not exposed while sampling.
- (h) Analytical method.
 - (i) Apparatus.
 - (A) Gas chromatograph equipped with a linearized electron capture detector.
 - (B) GC column capable of separating the derivative of ethylene oxide (2-bromoethanol) from any interferences and the 1% CS2 in benzene solvent. The column used for validation studies was: 10 ft x 1/8 inch stainless steel 20% SP-2100, .1% Carbowax 1500 on 100/120 Supelcoport.
 - (C) An electronic integrator or some other suitable method of measuring peak areas.
 - (D) Two milliliter vials with Teflon-lined caps.
 - (E) Gas tight syringe--500 µL or other convenient sizes for preparing standards.
 - (F) Microliter syringes--10 μL or other convenient sizes for diluting standards and 1 μL for sample injections.

- (G) Pipets for dispensing the 1% CS2 in benzene solvent. The Glenco 1 mL dispenser is adequate and convenient.
- (H) Volumetric flasks--5 mL and other convenient sizes for preparing standards.
- (I) Disposable Pasteur pipets.
- (ii) Reagents.
 - (A) Benzene, reagent grade.
 - (B) Carbon disulfide, reagent grade.
 - (C) Ethylene oxide, 99.7% pure.
 - (D) Hydrobromic acid, 48% reagent grade.
 - (E) Sodium carbonate, anhydrous, reagent grade.
 - (F) Desorbing reagent, 99% Benzene/1% CS2.
- (iii) Sample preparation.
 - (A) The front and back sections of each sample are transferred to separate 2-mL vials.
 - (B) Each sample is desorbed with 1.0 mL of desorbing reagent.
 - (C) The vials are sealed immediately and allowed to desorb for one hour with occasional shaking.
 - (D) Desorbing reagent is drawn off the charcoal with a disposable pipet and put into clean 2-mL vials.
 - (E) One drop of HBr is added to each vial. Vials are resealed and HBr is mixed well with the desorbing reagent.
 - (F) About 0.15 gram of sodium carbonate is carefully added to each vial. Vials are again resealed and mixed well.
- (iv) Standard preparation.
 - (A) Standards are prepared by injecting the pure ethylene oxide gas into the desorbing reagent.
 - (B) A range of standards are prepared to make a calibration curve. A concentration of $1.0~\mu L$ of ethylene oxide gas per 1 mL desorbing reagent is equivalent to $1.0~\mu L$ of ethylene oxide gas per 1 mL desorbing reagent is equivalent to $1.0~\mu L$ of ethylene oxide gas volumes at $25^{\circ}C$ and $760~\mu L$ for the recommended 1 liter air sample. This amount is uncorrected for desorption efficiency (see backup data section (3)(i)(ii), for desorption efficiency corrections).
 - (C) One drop of HBr per mL of standard is added and mixed well.

- (D) About 0.15 grams of sodium carbonate is carefully added for each drop of HBr (a small reaction will occur).
- (v) Analysis.
 - (A) GC conditions.

Nitrogen flow rate--10mL/min.

Injector temperature--250°C

Detector temperature--300°C

Column temperature--100°C

Injection size--0.8 µL

Elution time--3.9 minutes

- (B) Peak areas are measured by an integrator or other suitable means.
- (C) The integrator results are in area units and a calibration curve is set up with concentration vs. area units.
- (vi) Interferences.
 - (A) Any compound having the same retention time of 2-bromoethanol is a potential interference. Possible interferences should be listed on the sample data sheets.
 - (B) GC parameters may be changed to circumvent interferences.
 - (C) There are usually trace contaminants in benzene.

These contaminants, however, posed no problem of interference.

(D) Retention time date on a single column is not considered proof of chemical identity. Samples over the 1.0 ppm target level should be confirmed by GC/Mass Spec or other suitable means.

(vii) Calculations.

- (A) The concentration in μ g/mL for a sample is determined by comparing the area of a particular sample to the calibration curve, which has been prepared from analytical standards.
- (B) The amount of analyte in each sample is corrected for desorption efficiency by use of a desorption curve.
- (C) Analytical results, A, from the two tubes that compose a particular air sample are added together.

(D) The concentration for a sample is calculated by the following equation:

EtO,
$$mg/m^3 = \frac{A \times B}{C}$$

where:

 $A = \mu g/mL$

B = desorption volume in milliliters

C = air volume in liters.

(E) To convert mg/m³ to parts per million (ppm) the following relationship is used:

where:

 $mg/m^3 = results from 3.7.4$

 $24.45 = \text{molar volume at } 25^{\circ}\text{C} \text{ and } 760\text{mm Hg}$

44.05 = molecular weight of EtO.

- (viii) Safety precaution.
 - (A) Ethylene oxide and benzene are potential carcinogens and care must be exercised when working with these compounds.
 - (B) All work done with the solvents (preparation of standards, desorption of samples, etc.) should be done in a hood.
 - (C) Avoid any skin contact with all of the solvents.
 - (D) Wear safety glasses at all times.
 - (E) Avoid skin contact with HBr because it is highly toxic and a strong irritant to eyes and skin.
- (i) Backup data.
 - (i) Detection limit data.

The detection limit was determined by injecting $0.8~\mu L$ of a $0.015~\mu g/m L$ standard of ethylene oxide into 1% CS2 in benzene. The detection limit of the analytical procedure is taken to be $1.20~x~10\text{-}5~\mu g$ per injection. This is equivalent to $8.3~ppb~(0.015~mg/m^3)$ for the recommended air volume.

(ii) Desorption efficiency. Ethylene oxide was spiked into charcoal tubes and the following recovery data was obtained:

Amount Spiked (µg)	Amount Recovered (μg)	Percent Recovery
4.5	4.32	96.0
3.0	2.61	87.0
2.25	2.025	90.0
1.5	1.365	91.0
1.6	1.38	92.0
.75	.6525	87.0
.375	.315	84.0
.375	.312	83.2
.1875	.151	80.5
.094	.070	74.5

Note: At lower amounts the recovery appears to be nonlinear.

(iii) Sensitivity data. The following data was used to determine the calibration curve:

	0.5 x .75	1 x 1.5	2 x 3.0
Injection	μg/mL	μg/mL	μg/mL
1	30904	59567	111778
2	30987	62914	106016
3	32555	58578	106122
4	32242	57173	109716
X	31672	59558	108408

Slope = 34.105.

(iv) Recovery. The recovery was determined by spiking ethylene oxide onto lot 120 charcoal tubes and desorbing with 1% CS2 in Benzene. Recoveries were done at 0.5, 1.0, and 2.0 X the target concentration (1 ppm) for the recommended air volume.

Percent Recovery

Sample	0.5x	1.0x	2.0x
1	88.7	95.0	91.7
2	83.8	95.0	87.3
3	84.2	91.0	86.0
4	88.0	91.0	83.0
5	88.0	86.0	85.0
X	86.5	90.5	87.0

Weighted average = 88.2

(v) Precision of the analytical procedure. The following data was used to determine the precision of the analytical method:

Concentration	0.5 x .75	1 x 1.5	2 x 3.0
	μg/ml	μg/mL	μg/mL
Injection	.7421	1.4899	3.1184
	.7441	1.5826	3.0447
	.7831	1.4628	2.9149
	.7753	1.4244	2.9185
Average	.7612	1.4899	2.9991
Standard			
Deviation	.0211	.0674	.0998
CV	.0277	.0452	.0333

CV + 0.036

(vi) Storage data. Samples were generated at 1.5 mg/m³ ethylene oxide at 85% relative humidity, 22°C and 633 mm. All samples were taken for 20 minutes at 0.05 Lpm. Six samples were analyzed as soon as possible and fifteen samples were stored at refrigerated temperature (5°C) and fifteen samples were stored at ambient temperature (23°C). These stored samples were analyzed over a period of nineteen days.

Percent Recovery

Day Analyzed	Refrigerated	Ambient
1	87.0	87.0
1	93.0	93.0
1	94.0	94.0
1	92.0	92.0
4	92.0	91.0
4	93.0	88.0
4	91.0	89.0
6	92.0	
6	92.0	
8		92.0
8		86.0
10	91.7	
10	95.5	
10	95.7	
11		90.0
11		82.0
13	78.0	
13	81.4	
13	82.4	
14		78.5
14		72.1
18	66.0	
18	68.0	
19		64.0
19		77.0

- (vii) Breakthrough data.
 - (A) Breakthrough studies were done at 2 ppm (3.6 mg/m³) at approximately 85% relative humidity at 22°C (ambient temperature). Two charcoal tubes were used in series. The backup tube was changed every 10 minutes and analyzed for breakthrough. The flow rate was 0.050 Lpm.

T. A. M	Time	Percent
Tube No.	(minutes)	Breakthrough
1	10	(*)
2	20	(*)
3	30	(*)
4	40	1.23
5	50	3.46
6	60	18.71
7	70	39.2
8	80	53.3
9	90	72.0
10	100	96.0
11	110	113.0
12	120	133.9

*None.

- (B) The 5% breakthrough volume was reached when 2.6 liters of test atmosphere were drawn through the charcoal tubes.
- (i) References.
 - (i) "NIOSH Manual of Analytical Methods," 2nd ed. NIOSH: Cincinnati, 1977; Method S 286.
 - (ii) "IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man." International Agency for Research on Cancer: Lyon, 1976; Vol. II, p. 157.
 - (iii) Sax., N.I. "Dangerous Properties of Industrial Materials," 4th ed.; Van Nostrand Reinhold Company, New York, 1975; p. 741.
 - (iv) "The Condensed Chemical Dictionary," 9th ed.; Hawley, G.G., ed.; Van Nostrand Reinhold Company, New York, 1977; p. 361.
- (4) **Summary of other sampling procedures.** OSHA believes that several other types of monitoring equipment and techniques exist for monitoring time-weighted averages. Considerable research and method development is currently being performed, which will lead to improvements and a wider variety of monitoring techniques. A combination of monitoring procedures can be used. There probably is no one best method for monitoring personal exposure to ethylene oxide in all cases. There are advantages, disadvantages, and limitations to each method. The method of choice will depend on the need and requirements. Some commonly used methods include the use of charcoal tubes, passive dosimeters, Tedler gas sampling bags, detector tubes, photoionization detection units, infrared detection units and gas chromatographs. A number of these methods are described below.
 - (a) Charcoal tube sampling procedures.

- (i) Qazi-Ketcham method (Ex-11-133)--This method consists of collecting EtO on Columbia JXC activated carbon, desorbing the EtO with carbon disulfide and analyzing by gas chromatography with flame ionization detection. Union Carbide has recently updated and revalidated this monitoring procedure. This method is capable of determining both eight-hour time-weighted average exposures and short-term exposures. The method was validated to 0.5 ppm. Like other charcoal collecting procedures, the method requires considerable analytical expertise.
- (ii) ASTM-proposed method--The Ethylene Oxide Industry Council (EOIC) has contracted with Clayton Environmental Consultants, Inc. to conduct a collaborative study for the proposed method. The ASTM-Proposed method is similar to the method published by Qazi and Ketcham in the November 1977 American Industrial Hygiene Association Journal, and to the method of Pilney and Coyne, presented at the 1979 American Industrial Hygiene Conference. After the air to be sampled is drawn through an activated charcoal tube, the ethylene oxide is desorbed from the tube using carbon disulfide and is quantitated by gas chromatography utilizing a flame ionization detector. The ASTM-proposed method specifies a large two-section charcoal tube, shipment in dry ice, storage at less than -5°C, and analysis within three weeks to prevent migration and sample loss. Two types of charcoal tubes are being tested--Pittsburgh Coconut-Based (PCB) and columbia JXC charcoal. This collaborative study will give an indication of the inter- and intralaboratory precision and accuracy of the ASTM/proposed method. Several laboratories have considerable expertise using the Qazi-Ketcham and Dow methods.
- (b) Passive monitors--Ethylene oxide diffuses into the monitor and is collected in the sampling media. The DuPont Pro-Tek badge collects EtO in an absorbing solution, which is analyzed colorimetrically to determine the amount of EtO present. The 3M 350 badge collects the EtO on chemically treated charcoal. Other passive monitors are currently being developed and tested. Both 3M and DuPont have submitted data indicating their dosimeters meet the precision and accuracy requirements of the proposed ethylene oxide standard. Both presented laboratory validation data to 0.2 ppm (Exs. 11-65, 4-20, 108, 109, 130).
- (c) Tedlar gas sampling bags-samples are collected by drawing a known volume of air into a Tedlar gas sampling bag. The ethylene oxide concentration is often determined on-site using a portable gas chromatograph or portable infrared spectometer.
- (d) Detector tubes--A known volume of air is drawn through a detector tube using a small hand pump. The concentration of EtO is related to the length of stain developed in the tube. Detector tubes are economical, easy to use, and give an immediate readout. Unfortunately, partly because they are nonspecific, their accuracy is often questionable. Since the sample is taken over a short period of time, they may be useful for determining the source of leaks.
- (e) Direct reading instruments:
 - (i) There are numerous types of direct reading instruments, each having its own strengths and weaknesses (Exs. 135B, 135C, 107, 11-78, 11-153). Many are relatively new, offering greater sensitivity and specificity. Popular ethylene oxide direct reading instruments include infrared detection units, photoionization detection units, and gas chromatographs.
 - (ii) Portable infrared analyzers provide an immediate, continuous indication of a concentration value; making them particularly useful for locating high concentration pockets, in leak detection and in ambient air monitoring. In infrared detection units, the amount of infrared light absorbed by the gas being analyzed at selected infrared

wavelengths is related to the concentration of a particular component. Various models have either fixed or variable infrared filters, differing cell pathlengths, and microcomputer controls for greater sensitivity, automation, and interference elimination.

- (iii) A fairly recent detection system is photoionization detection. The molecules are ionized by high energy ultraviolet light. The resulting current is measured. Since different substances have different ionization potentials, other organic compounds may be ionized. The lower the lamp energy, the better the selectivity. As a continuous monitor, photoionization detection can be useful for locating high concentration pockets, in leak detection, and continuous ambient air monitoring. Both portable and stationary gas chromatographs are available with various types of detectors, including photoionization detectors. A gas chromatograph with a photoionization detector retains the photoionization sensitivity, but minimizes or eliminates interferences. For several GC/PID units, the sensitivity is in the 0.1-0.2 ppm EtO range. The GC/PID with microprocessors can sample up to 20 sample points sequentially, calculate and record data, and activate alarms or ventilation systems. Many are quite flexible and can be configured to meet the specific analysis needs for the workplace.
- (iv) DuPont presented their laboratory validation data of the accuracy of the Qazi-Ketcham charcoal tube, the PCB charcoal tube, Miran 103 IR analyzer, 3M #3550 monitor and the DuPont C-70 badge. Quoting Elbert V. Kring:
- (v) We also believe that OSHA's proposed accuracy in this standard is appropriate. At plus or minus 25 percent at one part per million, and plus or minus 35 percent below that. And, our data indicates there's only one monitoring method, right now, that we've tested thoroughly, that meets that accuracy requirements. That is the DuPont Pro-Tek badge*

 * *. We also believe that this kind of data should be confirmed by another independent laboratory, using the same type dynamic chamber testing (Tr. 1470).

Additional data by an independent laboratory following their exact protocol was not submitted. However, information was submitted on comparisons and precision and accuracy of those monitoring procedures which indicate far better precision and accuracy of those monitoring procedures than that obtained by DuPont (Ex. 4-20, 130, 11-68, 11-133, 130, 135A).

(vi) The accuracy of any method depends to a large degree upon the skills and experience of those who not only collect the samples but also those who analyze the samples. Even for methods that are collaboratively tested, some laboratories are closer to the true values than others. Some laboratories may meet the precision and accuracy requirements of the method; others may consistently far exceed them for the same method.

[Statutory Authority: Chapter 49.17 RCW. 88-14-108 (Order 88-11), § 296-62-07389, filed 7/6/88; 87-24-051 (Order 87-24), § 296-62-07389, filed 11/30/87.]